Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s65px Total loading time: 0.279 Render date: 2021-03-04T11:12:26.433Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Mechanism of Antagonism of Mesotrione on Sulfonylurea Herbicides

Published online by Cambridge University Press:  20 January 2017

Christopher L. Schuster
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Kassim Al-Khatib
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
J. Anita Dille
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Corresponding
E-mail address:

Abstract

Studies were conducted to determine if altered absorption, translocation, or metabolism were the basis for the reduction in sulfonylurea herbicide efficacy on foxtail species when mesotrione was mixed with a sulfonylurea herbicide. Green foxtail and yellow foxtail plants were grown in the greenhouse and treated at the four-leaf stage with 14C-labeled nicosulfuron or rimsulfuron, applied alone or with mesotrione or mesotrione + atrazine. Absorption of nicosulfuron was greater in green foxtail and yellow foxtail 7 d after treatment (DAT) when applied alone, compared with absorption when mixing the herbicide with mesotrione or mesotrione + atrazine. When nicosulfuron was applied alone, 9% more of the nicosulfuron in green foxtail was translocated at 7 DAT, as compared with when nicosulfuron was applied in combination with mesotrione or mesotrione + atrazine. Translocation of nicosulfuron in yellow foxtail, however, was similar when nicosulfuron was applied alone or in combination with mesotrione or mesotrione + atrazine. The addition of mixing rimsulfuron with mesotrione did not reduce the absorption of rimsulfuron in green foxtail 7 DAT, but the addition of mesotrione + atrazine resulted in a 20% decrease in rimsulfuron absorption 7 DAT compared with absorption of rimsulfuron applied alone. Yellow foxtail absorption of rimsulfuron at 7 DAT was decreased by 11 or 20% when mixed with mesotrione or mesotrione + atrazine, respectively. Application of rimsulfuron alone resulted in 6% more herbicide being translocated to the treated tiller in green foxtail at 7 DAT, compared with an application of mesotrione + atrazine and rimsulfuron. Translocation of rimsulfuron in yellow foxtail was similar when applied alone or in combination with mesotrione or mesotrione + atrazine. Nicosulfuron and rimsulfuron metabolism in foxtail species was similar when applied alone or in combination with mesotrione or mesotrione + atrazine.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

References

Babczinski, P. and Zelinski, T. 1991. Mode of action of herbicidal ALS-inhibitors on acetolactate synthase from green plant cell cultures, yeast and Escherichia coli . Pestic. Sci. 31:305323.CrossRefGoogle Scholar
Burton, J. D., Maness, E. M., Monks, D. W., and Robinson, D. K. 1992. Differential herbicide tolerance of Landmark and Merit sweet corn is due to different rates of metabolism. Abstr. Weed Sci. Soc. Am. 32:91.Google Scholar
Camacho, R. F., Moshier, L. J., Morishita, D. W., and Devlin, D. C. 1991. Rhizome johnsongrass (Sorghum halepense) control in corn (Zea mays) with primisulfuron and nicosulfuron. Weed Technol. 5:789794.Google Scholar
Christopher, J. T., Preston, C., and Powles, S. B. 1994. Malathion antagonized metabolism-based chlorsulfuron resistance in Lolium rigidum . Pestic. Biochem. Physiol. 49:172182.CrossRefGoogle Scholar
Damalas, C. A. and Eleftherohorinos, I. G. 2001. Dicamba and atrazine antagonism on sulfonylurea herbicides used for johnsongrass (Sorghum halepense) control in corn (Zea mays). Weed Technol. 15:6267.CrossRefGoogle Scholar
Diehl, K. E., Mukaida, H., Liebl, R. A., and Stoller, E. W. 1993. Sensitivity mechanism in an ALS-susceptible corn hybrid. Abstr. Weed Sci. Soc. Am. 33:191.Google Scholar
Dobbels, A. F. and Kapusta, G. 1993. Postemergence weed control in corn (Zea mays) with nicosulfuron combinations. Weed Technol. 7:844850.Google Scholar
Franssen, A. S., Skinner, D. Z., Al-Khatib, K., Horak, M. J., and Kulakow, P. A. 2001. Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Sci. 49:598606.CrossRefGoogle Scholar
Frear, D. S., Swanson, H. E., and Thalacker, F. W. 1991. Induced microsomal oxidation of diclofop, triasulfuron, chlorsulfuron, and linuron in wheat. Pestic. Biochem. Physiol. 41:274287.CrossRefGoogle Scholar
Green, J. M. and Ulrich, J. F. 1993. Response of corn (Zea mays L.) inbreds and hybrids to sulfonylurea herbicides. Weed Sci. 32:162167.Google Scholar
Heap, I. 2006. The International Survey of Herbicide Resistant Weeds. Available online at http://www.weedscience.com. Acessed October 22, 2006.Google Scholar
Kreuz, K. and Fonne-Pfister, R. 1992. Herbicide–insecticide interaction in maize: malathion inhibits cytochrome p450-dependent primisulfuron metabolism. Pestic. Biochem. Physiol. 43:232240.CrossRefGoogle Scholar
Mallory-Smith, C., Hendrickson, P., and Muller-Warrant, G. 1999. Cross-resistance of primisulfuron-resistant Bromus tectorum L. (downy brome) to sulfosulfuron. Weed Sci. 47:256257.Google Scholar
Mitchell, G., Bartlett, D. W., Fraser, T. E. M., Hawkes, T. R., Holt, D. C., Townson, J. K., and Wichert, R. A. 2001. Mesotrione: a new selective herbicide for use in maize. Pest Manag. Sci. 57:120128.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Mougin, C., Polge, N., Scalla, R., and Cabanne, F. 1991. Interactions of various agrochemicals with cytochrome P-450-dependent monooxygenases of wheat cells. Pestic. Biochem. Physiol. 40:111.CrossRefGoogle Scholar
Neighbors, S. and Privalle, L. S. 1990. Metabolism of primisulfuron by barnyardgrass. Pestic. Biochem. Physiol. 37:145153.CrossRefGoogle Scholar
Norris, S. R., Shen, X., and DellaPenna, D. 1998. Complementation of the Arabidopsis pds1 mutant with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol. 117:13171323.CrossRefGoogle ScholarPubMed
Ohmes, G. A. Jr. and Kendig, J. A. 1999. Inheritance of an ALS-cross-resistant common cocklebur (Xanthium strumarium) biotype. Weed Technol. 13:100103.Google Scholar
Ray, T. B. 1984. Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis. Plant Physiol. 75:827831.CrossRefGoogle ScholarPubMed
Schuster, C. L., Al-Khatib, K., and Dille, J. A. 2004. Interactions between mesotrione and sulfonylurea herbicides. Proc. North Central Weed Sci. Soc. 59:62.Google Scholar
Swanton, C. J., Chandler, H., Elmes, M. J., Murphy, S. D., and Anderson, G. W. 1996. Postemergence control of annual grasses and corn (Zea mays) tolerance using DPX-79406. Weed Technol. 10:288294.Google Scholar
Thompson, L. and Slife, F. W. 1969. Foliar and root absorption of atrazine applied postemergence to giant foxtail. Weed Sci. 17:251256.Google Scholar
Umbarger, H. E. 1969. Regulation of amino metabolism. Annu. Rev. Biochem. 38:323370.CrossRefGoogle Scholar
United States Department of Agriculture 2006. Agricultural Chemical Usage, Field Crops Summary. National Agricultural Statistics Service, Economics Research Service. Available online at http://usda.mannlib.cornell.edu/usda/nass.com. Accessed October 20, 2006.Google Scholar
Vencil, W. K. 2002. Data on herbicides and herbicide modifiers. in. Herbicide Handbook. 8th ed. Lawrence, KS Weed Science Society of America. 125128. and. 288–289.Google Scholar
White, A. D., Owen, M. D. K., Hartzler, R. G., and Cardina, J. 2002. Common sunflower resistance to acetolactate synthase-inhibiting herbicides. Weed Sci. 50:432437.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 29 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 4th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mechanism of Antagonism of Mesotrione on Sulfonylurea Herbicides
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mechanism of Antagonism of Mesotrione on Sulfonylurea Herbicides
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mechanism of Antagonism of Mesotrione on Sulfonylurea Herbicides
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *