Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T21:57:21.144Z Has data issue: false hasContentIssue false

Genetic Diversity of Wild Oat (Avena fatua) Populations from China and the United States

Published online by Cambridge University Press:  20 January 2017

Runzhi Li
Affiliation:
Department of Agronomy, China Agricultural University, Beijing, 100094, China
Shiwen Wang
Affiliation:
Department of Agronomy, China Agricultural University, Beijing, 100094, China
Liusheng Duan
Affiliation:
Department of Agronomy, China Agricultural University, Beijing, 100094, China
Zhaohu Li*
Affiliation:
Department of Agronomy, China Agricultural University, Beijing, 100094, China
Michael J. Christoffers
Affiliation:
Department of Plant Sciences, North Dakota State University, Fargo, ND 58105
Lemma W. Mengistu
Affiliation:
Department of Plant Sciences, North Dakota State University, Fargo, ND 58105
*
Corresponding author's E-mail: lizhaohu@cau.edu.cn

Abstract

Weed genetic diversity is important for understanding the ability of weeds to adapt to different environments and the impact of herbicide selection on weed populations. Genetic diversity within and among six wild oat populations in China varying in herbicide selection pressure and one population in North Dakota were surveyed using 64 polymorphic alleles resulting from 25 microsatellite loci. Mean Nei's gene diversity (h) for six wild oat populations from China was between 0.17 and 0.21, and total diversity (HT) was 0.23. A greater proportion of this diversity, however, was within (Hs = 0.19) rather than among (Gst = 0.15) populations. For the wild oat population from the United States, h = 0.24 and HT = 0.24 were comparable to the values for the six populations from China. Cluster analysis divided the seven populations into two groups, where one group was the United States population and the other group included the six Chinese populations. The genetic relationships among six populations from China were weakly correlated with their geographic distribution (r = 0.22) using the Mantel test. Minimal difference in gene diversity and small genetic distance (Nei's distance 0.07 or less) among six populations from China are consistent with wide dispersal of wild oat in the 1980s. Our results indicate that the wild oat populations in China are genetically diverse at a level similar to North America, and the genetic diversity of wild oat in the broad spatial scale is not substantially changed by environment, agronomic practices, or herbicide usage.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amsellem, L., Dutech, C., and Billotte, N. 2001. Isolation and characterization of polymorphic microsatellite loci in Rubus alceifolius Poir. (Rosaceae), an invasive weed in La Réunion island. Mol. Ecol. Notes. 1:3335.Google Scholar
Ash, G. J., Raman, R., and Crump, N. S. 2003. An investigation of genetic variation in Carthamus lanatus in New South Wales, Australia, using intersimple sequence repeats (ISSR) analysis. Weed Res. 43:208213.Google Scholar
Bassam, B. J., Gustavo, C. A., and Gresshoff, P. M. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196:8083.Google Scholar
Bourgeois, L., Kenkel, N. C., and Morrison, I. N. 1997. Characterization of cross-resistance patterns in acetyl-CoA carboxylase inhibitor resistant wild oat (Avena fatua). Weed Sci. 45:750755.Google Scholar
Cavan, G., Biss, P., and Moss, S. R. 1998. Herbicide resistance and gene flow in wild oats (Avena fatua and Avena sterilis ssp. ludoviciana). Ann. Appl. Biol. 133:207217.CrossRefGoogle Scholar
Chauvel, B. and Gasquez, J. 1994. Relationships between genetic polymorphism and herbicide resistance within Alopecurus myosuroides Huds. Heredity. 72:336344.Google Scholar
Danquah, E. Y., Johnson, D. E., Riches, C., Arnold, G. M., and Karp, A. 2002. Genetic diversity in Echinochloa spp. from different geographic origins and within rice fields in Côte d′lvoire. Weed Res. 42:394405.Google Scholar
Dekker, J. 1997. Weed diversity and weed management. Weed Sci. 37:237246.Google Scholar
Devos, K. M. and Gale, M. D. 2000. Genome relationships: the grass model in current research. Plant Cell. 12:637646.Google Scholar
Excoffier, L., Laval, G., and Schneider, S. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinformatics Online. 1:4750.Google Scholar
Friesen, L. F., Jones, T. L., Van Acker, R. C., and Morrison, I. N. 2000. Identification of Avena fatua populations resistant to imazamethabenz, flamprop, and fenoxaprop-P. Weed Sci. 48:532540.Google Scholar
Goldstein, D. B. and Pollock, D. D. 1997. Launching microsatellites: a review of mutation processes and methods of phylogenetic inference. J. Hered. 88:335342.Google Scholar
Green, J. M., Barker, J. H. A., Marshall, E. J. P., Froud-Williams, R. J., Peters, N. C. B., Arnold, G. M., Dawson, K., and Karp, A. 2001. Microsatellite analysis of the inbreeding grass weed barren brome (Anisantha sterilis) reveals genetic diversity at the within- and between-farm scales. Mol. Ecol. 10:10351045.Google Scholar
Guyomarc'h, H., Sourdille, P., Charmet, G., Edwards, K. J., and Bernard, M. 2002. Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor. Appl. Genet. 104:11641172.CrossRefGoogle Scholar
Hamrick, J. L. and Godt, M. J. 1990. Allozyme diversity in plant species. Pages 4363. in Brown, A.D.H., Clegg, M.T., Kahler, A.L., Weir, B.S. eds. Plant Population Genetics, Breeding and Genetic Resources. Sunderland, MA Sinauer Associates.Google Scholar
Heap, I. M. 2006. International Survey of Herbicide Resistant Weeds. Herbicide Resistance Action Committee and Weed Science Society of America. http://www.weedscience.com. Accessed: October 1, 2006.Google Scholar
Heap, I. M., Murray, B. G., Loeppky, H. A., and Morrison, I. N. 1993. Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in wild oat (Avena fatua). Weed Sci. 41:232238.CrossRefGoogle Scholar
Hernândez, P., Dorado, G., and Laurie, D. A. 2001. Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus . Theor. Appl. Genet. 102:616622.Google Scholar
Holt, R. D. and Hochberg, M. E. 1997. When is biological control evolutionarily stable (or is it?). Ecology. 78:16731683.Google Scholar
Imam, A. G. and Allard, R. W. 1965. Population studies in predominantly self-pollinated species, VI: genetic variability between and within natural populations of wild oats from differing habitats in California. Genetics. 51:4962.CrossRefGoogle ScholarPubMed
Lacy, R. C. 1987. Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 8:217226.Google Scholar
Lewontin, R. C. 1972. The apportionment of human diversity. Evol. Biol. 6:381398.Google Scholar
Li, C. D., Rossnagel, B. G., and Scoles, G. J. 2000. The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor. Appl. Genet. 101:2591268.CrossRefGoogle Scholar
Liu, Z. W., Biyashev, R. M., and Maroof, M. A. S. 1996. Development of simple sequence repeat markers and their integration into a barley linkage map. Theor. Appl. Genet. 93:869876.Google Scholar
Loveless, M. D. and Hamrick, J. L. 1984. Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 15:6596.Google Scholar
Mengistu, L. W., Christoffers, M. J., and Kegode, G. O. 2004. Genetic diversity of biennial wormwood. Weed Sci. 52:5360.Google Scholar
Mengistu, L. W. and Messersmith, C. G. 2002. Genetic diversity of kochia. Weed Sci. 50:498503.Google Scholar
Mengistu, L. W., Messersmith, C. G., and Christoffers, M. J. 2003. Diversity of herbicide resistance among wild oat sampled 36 yr apart. Weed Sci. 51:764773.Google Scholar
Mengistu, L. W., Messersmith, C. G., and Christoffers, M. J. 2005. Genetic diversity of herbicide-resistant and -susceptible Avena fatua populations in North Dakota and Minnesota. Weed Res. 45:413423.Google Scholar
Mengistu, L. W., Mueller-Warrant, G. W., and Barker, R. E. 2000. Genetic diversity of Poa annua in western Oregon grass seed crops. Theor. Appl. Genet. 101:7079.Google Scholar
Moodie, M., Finch, R. P., and Marshall, G. 1997. Analysis of genetic variation in wild mustard (Sinapis arvensis) using molecular markers. Weed Sci. 45:102107.Google Scholar
Mörchen, M., Cuguen, J., Michaelis, G., Hanni, C., and Saumitouplaprade, P. 1996. Abundance and length polymorphism of microsatellite repeats in Beta vulgaris L. Theor. Appl. Genet. 92:326333.Google Scholar
Narinder, P., Jagdeep, S. S., Lesli, L. D., and Frederuc, L. K. 2002. Development and characterization of microsatellite and RFLP-derived PCR markers in oat. Crop Sci. 42:912918.Google Scholar
Naylor, J. M. 1983. Studies on the genetic control of some physiological processes in seeds. Can. J. Plant Sci. 60:777784.Google Scholar
Naylor, J. M. and Jana, S. 1976. Genetic adaptation for seed dormancy in Avena fatua . Can. J. Bot. 54:306312.CrossRefGoogle Scholar
Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70:33213323.Google Scholar
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 89:583590.Google Scholar
Rashid, A., O'Donovan, J. T., Khan, A. A., Blackshaw, R. E., Harker, K. N., and Pharis, R. P. 1998. A possible involvement of gibberellin in the mechanism of Avena fatua resistance to triallate and cross-resistance to difenzoquat. Weed Res. 38:461466.Google Scholar
Röder, M. S., Plaschke, J., König, S. U., and Börner, A. 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Mol. Gen. Genet. 246:327333.Google Scholar
Rohlf, F. J. 1992. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.0. Stony Brook, NY State University of New York.Google Scholar
Seefeldt, S. S., Gealy, D. R., Brewster, B. D., and Fuerst, E. P. 1994. Cross-resistance of several diclofop-resistant wild oat (Avena fatua) biotypes from the Willamette Valley of Oregon. Weed Sci. 42:430437.Google Scholar
Senda, T., Kubo, N., Hirai, M., and Tominaga, T. 2004. Development of microsatellite markers and their effectiveness in Lolium temulentum . Weed Res. 44:136141.CrossRefGoogle Scholar
Slaktin, M. 1987. Gene flow and geographic structure of natural populations. Science. 236:787792.Google Scholar
Slatkin, M. and Barton, N. H. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution. 43:13491368.Google Scholar
Steiner, J. J., Poklemba, C. J., Fjellstrom, R. G., and Elliott, L. F. 1995. A rapid one-tube genomic DNA extraction process for PCR and RAPD analyses. Nucleic Acids Res. 23:25692570.Google Scholar
Thai, K. M., Jana, S., and Naylor, J. M. 1985. Variability for response to herbicides in wild oat (Avena fatua) populations. Weed Sci. 33:829835.Google Scholar
Tu, H. L. 1987. Wild oat management and control. J. Weed Sci. 1 (1):4449. [in Chinese].Google Scholar
Wang, M. H., Zhang, W. H., and Jiang, M. G. 2003. A review of herbicides on wild oat. Pesticides. 42 (8):68. [in Chinese].Google Scholar
Yeh, F. C., Yang, R. C., and Boyle, T. 1999. POPGENE, Microsoft Windows-Based Freeware for Population Genetic Analysis, Release 1.31. Alberta, Canada University of Alberta.Google Scholar
Zhang, Z. J. 1995. Studies on the noxious weed wild oat (Avena fatua L.) and its integrated management in wheat fields. . Nanjing, China Nanjing Agricultural University. 63. [in Chinese].Google Scholar