Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T06:02:03.096Z Has data issue: false hasContentIssue false

Synaptic feedback, depolarization, and color opponency in cone photoreceptors

Published online by Cambridge University Press:  02 June 2009

Dwight A. Burkhardt
Affiliation:
Departments of Psychology and Physiology and Graduate Program in Neuroscience, University of Minnesota, Minneapolis

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez-Leefmans, F.J. (1990). Intracellular C1 regulation and synaptic inhibition in vertebrate and invertebrate neurons. In Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells, ed. Alvarez-Leefmans, F.J. & Russell, J.M. pp. 149150. New York: Plenum Press.CrossRefGoogle Scholar
Barnes, S. & Deschene, M.C. (1992). Contribution of Ca and Ca-activated C1 channels to regenerative depolarization and membrane bistability of cone photoreceptors. Journal of Neurophysiology 68, 745755.CrossRefGoogle Scholar
Barnes, S. & Hille, B. (1989). Ionic channels of the inner segment of tiger salamander cone photoreceptors. Journal of General Physiology 94, 719743.CrossRefGoogle ScholarPubMed
Baylor, D.A. (1987). Photoreceptor signals and vision. Investigative Ophthalmology and Visual Science 28, 3449.Google ScholarPubMed
Baylor, D.A., Fuortes, M.G.F. & O'Bryan, P.M. (1971). Receptive fields of cones in the retina of the turtle. Journal of Physiology (London) 214, 265294.CrossRefGoogle ScholarPubMed
Baylor, D.A. & Hodgkin, A.L. (1973). Detection and resolution of visual stimuli by turtle photoreceptors. Journal of Physiology (London) 234, 163168.CrossRefGoogle ScholarPubMed
Baylor, D.A. & Hodgkin, A.L. (1974). Changes in time scale and sensitivity in turtle photoreceptors. Journal of Physiology (London) 242, 729753.CrossRefGoogle ScholarPubMed
Baylor, D.A., Hodgkin, A.L. & Lamb, T.D. (1974). The electrical response of turtle cones to flashes and steps of light. Journal of Physiology (London) 242, 685727.CrossRefGoogle ScholarPubMed
Burkhardt, D.A. (1974). Sensitization and center-surround antagonism in Necturus retina. Journal of Physiology (London) 236, 593610.CrossRefGoogle Scholar
Burkhardt, D.A. (1977). Responses and receptive-field organization of cones in perch retinas. Journal of Neurophysiology 40, 5362.CrossRefGoogle ScholarPubMed
Burkhardt, D.A., Gottesman, J. & Thoreson, W.B. (1988). Prolonged depolarization in turtle cones evoked by current injection and stimulation of the receptive-field surround. Journal of Physiology (London) 407, 329348.CrossRefGoogle ScholarPubMed
Burkhardt, D.A., Gottesman, J. & Thoreson, W.B. (1989). An eye-cup slice preparation for intracellular recording in vertebrate retinas. Journal of Neuroscience Methods 28, 179187.CrossRefGoogle Scholar
Burkhardt, D.A. & Hassin, G. (1978). Influences of cones upon chromatic- and luminosity-type horizontal cells in pikeperch retinas. Journal of Physiology (London) 281, 125137.CrossRefGoogle ScholarPubMed
Burkhardt, D.A. & Hassin, G. (1983). Quantitative relations between the color-opponent response of horizontal cells and action spectra of cones. Journal of Neurophysiology 49, 961975.CrossRefGoogle ScholarPubMed
Burkhardt, D.A., Zhang, S. & Gottesman, J.G. (1991). Prolonged depolarization in rods in situ. Visual Neuroscience 6, 607614.CrossRefGoogle ScholarPubMed
Byzov, A.L. (1969). On the role of horizontal cells in the mechanism of retinal adaptation. Neurophysiology 1 –2, 160166.CrossRefGoogle Scholar
Byzov, A.L. (1977). Model feedback mechanism between horizontal cells and photoreceptors of the vertebrate retina. Neurophysiology 9, 8994.CrossRefGoogle Scholar
Byzov, A.L. & Shura-Bura, T.M. (1986). Electrical feedback mechanism in the processing of signals in the outer plexiform layer. Vision Research 26, 3344.CrossRefGoogle ScholarPubMed
Cervetto, L. & MacNicol, E.F. Jr, (1982). Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science 178, 767768.CrossRefGoogle Scholar
Chun, M.H. & Wässle, H. (1989). GABA-like immunoreactivity in the cat retina. Journal of Comparative Neurology 279, 5567.CrossRefGoogle ScholarPubMed
Daly, S.L. & Normann, R.A. (1985). Temporal information processing in cones: Effects of light adaptation on temporal summation and modulation. Vision Research 25, 11971206.CrossRefGoogle ScholarPubMed
Djamgoz, M.B.A. & Downing, J.E.G. (1988). A horizontal cell selectively contacts blue-sensitive cones in cyprinid fish retina: Intracellular staining with horseradish peroxidase. Proceedings of the Royal Society B 235, 281287.Google ScholarPubMed
Djamgoz, M.B.A., Kirsch, M. & Wagner, H.J. (1989). Haloperidol suppresses light-induced spinule formation and biphasic responses of horizontal cells in fish (roach) retina. Neuroscience Letters 107, 200204.CrossRefGoogle ScholarPubMed
Djamgoz, M.B.A. & Ruddock, K.H. (1979). Effects of picrotoxin and strychnine on fish retinal S potentials: Evidence for inhibitory control of depolarizing responses. Neuroscience Letters 12, 329334.CrossRefGoogle ScholarPubMed
Dong, C.-J. & Werblin, F.S. (1993). Differential effects of GABA on catfish rod and cone horizontal cells. Investigative Ophthalmology and Visual Science (Suppl.) 34, 1291.Google Scholar
Dowling, J.E. (1987). The Retina: An Approachable Part of the Brain. Cambridge, Massachusetts: Belknap Press.Google Scholar
Drujan, B.D. (1982). Biochemical correlates of the S potential. In S Potential, ed. Drujan, B.D. & Laufer, M., pp. 281305. New York: Liss.Google ScholarPubMed
Eliasof, S. & Werblin, F.S. (1989). GABA-a and GABA-b mediated synaptic transmission to cones in the tiger salamander retina. Investigative Ophthalmology and Visual Science (Suppl.) 30, 163.Google Scholar
Eysteinsson, T. & Frumkes, T.E. (1989). Physiological and pharmacological analysis of suppressive rod-cone interaction in Necturus retina. Journal of Neurophysiology 61, 866877.CrossRefGoogle ScholarPubMed
Fain, G.L. & Gerschenfeld, H.M. (1980). Calcium spikes in toad rods. Journal of Physiology (London) 303, 495513.CrossRefGoogle ScholarPubMed
Fuortes, M.G.F., Schwartz, E.A. & Simon, E.J. (1973). Colour-dependence of cone responses in the turtle retina. Journal of Physiology (London) 303, 515533.Google Scholar
Fuortes, M.G.F. & Simon, E.J. (1974). Interactions leading to horizontal cell responses in the turtle retina. Journal of Physiology (London) 240, 177198.CrossRefGoogle ScholarPubMed
Gerschenfeld, H.M. & Piccolino, M. (1977). Muscarinic antagonists block cone to horizontal transmission in turtle retina. Nature 268, 257259.CrossRefGoogle ScholarPubMed
Gerschenfeld, H.M. & Piccolino, M. (1980). Sustained effects of L-horizontal cells on turtle cones. Proceedings of the Royal Society B 206, 465480.Google ScholarPubMed
Gerschenfeld, H.M., Piccolino, M. & Neyton, J. (1980). Feedback modulation of cone synapses by L-horizontal cells of the turtle retina. Journal of Experimental Biology 89, 177192.CrossRefGoogle ScholarPubMed
Gottesman, J. & Burkhardt, D.A. (1987). Response properties of C-type horizontal cells in the retina of the bowfin. Vision Research 27, 179189.CrossRefGoogle ScholarPubMed
Gouras, P. (1972). S-potentials. In Handbook of Sensory Physiology, Vol. VII/2, Physiology of Photoreceptor Organs, ed. Fuortes, M.G.F., pp. 513529. New York: Springer-Verlag.CrossRefGoogle Scholar
Hashimoto, Y., Kato, A., Inokuchi, M. & Watanabe, K. (1976). Re-examination of horizontal cells in the carp retina with Procion Yellow electrode. Vision Research 16, 2529.CrossRefGoogle ScholarPubMed
Hedden, W.L. & Dowling, J.E. (1978). The interplexiform cell system. II. Effects of dopamine on goldfish retinal neurons. Proceedings of the Royal Society B (London) 201, 2755.Google Scholar
Hestrin, S. & Korenbrot, J.I. (1987). Voltage-activated potassium channels in the plasma membrane of rod outer segments: A possible effect of enzymatic cell dissociation. Journal of Neuroscience 7, 30723080.CrossRefGoogle ScholarPubMed
Itzhaki, A. & Perlman, I. (1987). Light adaptation of red cones and L1-horizontal cells in the turtle retina: Effect of the background spatial pattern. Vision Research 27, 685696.CrossRefGoogle ScholarPubMed
Itzhaki, A., Malik, S. & Perlman, I. (1992). Spectral properties of short-wavelength (blue) cones in the turtle retina. Visual Neuroscience 9, 235241.CrossRefGoogle ScholarPubMed
Kamermans, M., Dijk, B.W.V. & Spekreijse, H. (1991). Color opponency in cone-driven horizontal cells in carp retina. Journal of General Physiology 97, 819843.CrossRefGoogle ScholarPubMed
Kaneko, A. & Tachibana, M. (1981). Retinal bipolar cells with double colour-opponent receptive fields. Nature 293, 220222.CrossRefGoogle ScholarPubMed
Kaneko, A. & Tachibana, M. (1986 a). Effects of gamma-aminobutyric acid on isolated cone photoreceptors of the turtle retina. Journal of Physiology (London) 373, 463479.CrossRefGoogle ScholarPubMed
Kaneko, A. & Tachibana, M. (1986 b). Blocking effects of cobalt and related ions on the gamma-aminobutyric acid-induced current in turtle retinal cones. Journal of Physiology (London) 373, 463479.CrossRefGoogle ScholarPubMed
Kim, H.G. & Miller, R.F. (1992). Physiological and morphological correlations of horizontal cells in the mudpuppy retina. Journal of Neurophysiology 67, 829840.CrossRefGoogle ScholarPubMed
Kleinschmidt, J. & Dowling, J.E. (1975). Intracellular recordings from gecko photoreceptors during light and dark adaptation. Journal of General Physiology 66, 617648.CrossRefGoogle ScholarPubMed
Kolb, H. & Jones, J. (1984). Synaptic organization of the outer plexiform layer of the turtle retina: An electron-microscope study of serial sections. Journal of Neurocytology 13, 567591.CrossRefGoogle ScholarPubMed
Kolb, H. & Jones, J. (1987). The distinction by light and electron microscopy of two types of cone containing colorless oil droplets in the retina of the turtle. Vision Research 27, 14451458.CrossRefGoogle ScholarPubMed
KRAFT, T.W. (1988). Photocurrents of cone photoreceptors of the golden-mantled ground squirrel. Journal of Physiology (London) 404, 199213.CrossRefGoogle ScholarPubMed
Kraft, T.W. & Burkhardt, D.A. (1986). Telodendrites of cone photoreceptors: Structure and probable function. Journal of Comparative Neurology 249, 1327.CrossRefGoogle ScholarPubMed
Lam, D.M.K. & Steinman, L. (1971). The uptake of (gamma-3H)aminobutyric acid in the goldfish retina. Proceedings of the National Academy of Sciences of the U.S.A. 68, 27772781.CrossRefGoogle Scholar
Lamb, T.D. (1976). Spatial properties of horizontal cell responses in the turtle retina. Journal of Physiology (London) 263, 239255.CrossRefGoogle ScholarPubMed
Lasansky, A. (1971). Synaptic organization of cone cells in the turtle retina. Philosophical Transactions of the Royal Society B (London) 262, 365381.Google Scholar
Lasansky, A. (1981). Synaptic action mediating cone responses to annular illumination in the retina of the larval tiger salamander. Journal of Physiology (London) 310, 205214.CrossRefGoogle ScholarPubMed
Lasansky, A. (1984). Synaptic responses of retinal photoreceptors. In Photoreceptors, ed. Borsellino, A. & Cervetto, L., pp. 221231. New York: Plenum Press.CrossRefGoogle Scholar
Lasater, E. (1982). A white-noise analysis of responses and receptive fields of catfish cones. Journal of Neurophysiology 47, 10571068.CrossRefGoogle ScholarPubMed
Lasater, E. & Lam, D.M.K. (1984). The identification and some functions of GABAergic neurons in the distal catfish retina. Vision Research 24, 497506.CrossRefGoogle ScholarPubMed
Lasater, E., Normann, R.A. & Kolb, H. (1989). Signal integration at the pedicle of turtle cone photoreceptors: An anatomical and electrophysiological study. Visual Neuroscience 2, 553564.CrossRefGoogle ScholarPubMed
Lasater, E.M. (1992). Membrane properties of distal retinal neurons. Progress in Retinal Research 11, 215246.CrossRefGoogle Scholar
Lasater, E.M. & Witkovsky, P. (1991). The calcium current of turtle cone photoreceptor axon terminals. Neuroscience Research (Suppl.) 115, S165S173.Google Scholar
Leeper, H. (1978). Horizontal cells of the turtle retina. II. Analysis of interconnections between photoreceptor cells and horizontal cells by light microscopy. Journal of Comparative Neurology 182, 795810.CrossRefGoogle ScholarPubMed
Linberg, K.A. & Fisher, S.K. (1988). Ultrastructural evidence that horizontal cell axon terminals are presynaptic in the human retina. Journal of Comparative Neurology 268, 281297.CrossRefGoogle ScholarPubMed
Lipetz, L.E. (1978). A model of function at the outer plexiform layer of the cyprinid retina. In Frontiers in Visual Science, ed. Cool, S.J. & Smith, E.L. III pp. 471482. New York: Springer.CrossRefGoogle Scholar
Lipetz, L.E. (1985). Some neuronal circuits of the turtle retina. In The Visual System, ed. Fein, A. & Levine, J.S., pp. 107132. New York: Alan R. Liss.Google Scholar
Mangel, S.C. (1991). Analysis of the horizontal cell contribution to the receptive-field surround of ganglion cells in the rabbit retina. Journal of Physiology (London) 442, 211234.CrossRefGoogle Scholar
Maricq, A.V. & Korenbrot, J.I. (1988). Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors. Neuron 1, 503515.CrossRefGoogle ScholarPubMed
McCarren, M. & Alger, B.E. (1987). Papain effects on rat hippocampal neurons in the slice preparation. Neuroscience Letters 78, 307310.CrossRefGoogle ScholarPubMed
Millar, T.J. & Anderton, P.J. (1991). Effects of excitatory amino acids and their antagonism on the light response of luminosity and color-opponent horizontal cells in the turtle (Pseudemys scripta elegans) retina. Visual Neuroscience 6, 135150.CrossRefGoogle Scholar
Miyachi, E. & Murakami, M. (1989). Decoupling of horizontal cells in carp and turtle retina by intracellular injection of cyclic AMP. Journal of Physiology (London) 419, 213224.CrossRefGoogle ScholarPubMed
Miyachi, E. & Murakami, M. (1991). Synaptic inputs to turtle horizontal cells analyzed after blocking of gap junctions by intracellular injection of cyclic nucleotides. Vision Research 31, 631635.CrossRefGoogle ScholarPubMed
Mosinger, J.L., Yazulla, S. & Studholme, K.M. (1986). GABA-like immunoreactivity in the vertebrate retina: A species comparison. Experimental Eye Research 42, 631644.CrossRefGoogle ScholarPubMed
Murakami, M., Shimoda, Y., Nakatani, K., Miyachi, E.-I. & Watanabe, S.-I. (1982 a). GABA-mediated negative feedback from horizontal cells to cones in carp retina. Japanese Journal of Physiology 32, 911926.Google ScholarPubMed
Murakami, M., Shimoda, Y., Nakatani, K., Miyachi, E.-I. & Watanabe, S.-I. (1982 b). GABA-mediated negative feedback and color opponency in carp retina. Japanese Journal of Physiology 32, 927935.Google ScholarPubMed
Naka, K.-I. & Rushton, W.A.H. (1966). S-potentials from colour units in the retina of the fish (Cyrinidae). Journal of Physiology (London) 185, 536586.CrossRefGoogle Scholar
Naka, K.I., Itoh, M.A. & Chappell, R.L. (1987). Dynamics of turtle cones. Journal of General Physiology 89, 321337.CrossRefGoogle ScholarPubMed
Nelson, R., Pflug, R. & Baer, S.M. (1990). Background-induced flicker enhancement in cat retinal horizontal cells. II. Spatial properties. Journal of Neurophysiology 64, 326340.CrossRefGoogle ScholarPubMed
Nelson, R., Frumkes, T.E., Eysteinsson, T. & Pflug, R. (1993). GABAergic and non-GABAergic forms of suppressive rod-cone interaction (SCRI). Investigative Ophthalmology and Visual Science (Suppl.) 34, 1291.Google Scholar
Neyton, J., Piccolino, M. & Gerschenfeld, H.M. (1981). Involvement of small-field horizontal cells in feedback effects on green cones of turtle retina. Proceedings of the National Academy of Sciences of the U.S.A. 78, 46164619.CrossRefGoogle ScholarPubMed
Normann, R.A., Lipetz, L.E. & Muller, J.F. (1988). Does GABAergic feedback mediate the depolarizing photoresponses of “C-Type” horizontal cells in the turtle retina? Investigative Ophthalmology and Visual Science (Suppl.) 29, 224.Google Scholar
Normann, R.A. & Perlman, I. (1979). The effects of background illumination on the photoresponses of red and green cones. Journal of Physiology (London) 286, 491507.CrossRefGoogle ScholarPubMed
Norton, A.L., Spekreijse, H., Wolbarsht, M.L. & Wagner, H.G. (1968). Receptive-field organization of the S-potential. Science 160, 10211022.CrossRefGoogle ScholarPubMed
O'Bryan, P.M. (1973). Properties of the depolarizing synaptic potential evoked by peripheral illumination in cones of the turtle retina. Journal of Physiology (London) 235, 207223.CrossRefGoogle ScholarPubMed
Ohtsuka, T. & Kawmata, K. (1990). Telodendrial contact of HRP-filled photoreceptors in the turtle retina: Pathways of photoreceptor coupling. Journal of Comparative Neurology 292, 599613.CrossRefGoogle ScholarPubMed
Ohtsuka, T. & Kouyama, N. (1985). Synaptic contacts between red-sensitive cones and triphasic chromaticity cells in the turtle retina. Brain Research 346, 374377.CrossRefGoogle ScholarPubMed
Ohtsuka, T. & Kouyama, N. (1986 a). Electron-microscopic study of synaptic contacts between photoreceptors and HRP-filled horizontal cells in the turtle retina. Journal of Comparative Neurology 250 (2), 141156.CrossRefGoogle ScholarPubMed
Ohtsuka, T. & Kouyama, N. (1986 b). Morphological and physiological studies of cone-horizontal cell connections in the turtle retina. Neuroscience Research (Suppl.) 4, S69–S84.CrossRefGoogle ScholarPubMed
Owen, W.G. & Hare, W.A. (1989). Signal transfer from photoreceptors to bipolar cells in the retina of the tiger salamander. Neuroscience Research (Suppl.) 10, S77S87.Google ScholarPubMed
Perlman, I. & Normann, R.A. (1990). The effects of GABA and related drugs on horizontal cells in the isolated turtle retina. Visual Neuroscience 5, 469477.CrossRefGoogle ScholarPubMed
Perlman, I., Normann, R.A., Itzhaki, A. & Daly, S.J. (1985). Chromatic and spatial information processing by red cones and L-type horizontal cells in the turtle retina. Vision Research 25, 543549.CrossRefGoogle ScholarPubMed
Pflug, R., Nelson, R. & Ahnelt, P.K. (1990). Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal properties. Journal of Neurophysiology 64, 313325.CrossRefGoogle Scholar
Piccolino, M. (1986). Horizontal cells: Historical controversies and new interest. Progress in Retinal Research 5, 147163.CrossRefGoogle Scholar
Piccolino, M. & Gerschenfeld, H.M. (1977). Lateral interactions in the outer plexiform layer of turtle retinas after atropine block of horizontal cells. Nature 268, 259261.CrossRefGoogle ScholarPubMed
Piccolino, M. & Gerschenfeld, H.M. (1980). Characteristics and ionic processes involved in feedback spikes of turtle cones. Proceedings of the Royal Society B 206, 465480.Google ScholarPubMed
Piccolino, M., Neyton, J. & Gerschenfeld, H. (1981). Center-surround antagonistic organization in small-field luminosity horizontal cells of turtle retina. Journal of Neurophysiology 45, 363375.CrossRefGoogle ScholarPubMed
Piccolino, M., Neyton, J. & Gerschenfeld, H.M. (1980). Synaptic mechanisms involved in responses of chromaticity horizontal cells of turtle retina. Nature 284, 5860.CrossRefGoogle ScholarPubMed
Pinto, L.H. & Pak, W.L. (1974). Light-induced changes in photoreceptor membrane resistance and potential in gecko retina, II: Preparations with active lateral interactions. Journal of General Physiology 64, 4969.CrossRefGoogle ScholarPubMed
Purpura, K., Tranchina, D., Kaplan, E. & Shapley, R.M. (1990). Light adaptation in the primate retina: Analysis of changes in gain and dynamics of monkey retinal ganglion cells. Visual Neuroscience 4, 7593.CrossRefGoogle ScholarPubMed
Qian, H. & Dowling, J.E. (1993). Novel GABA responses from roddriven retinal horizontal cells. Nature 361, 162164.CrossRefGoogle ScholarPubMed
Saito, T., Miller, W.H. & Tomita, T. (1974). C- and L-type horizontal cells in the turtle retina. Vision Research 14, 119123.CrossRefGoogle Scholar
Sakai, H.M. & Naka, K.-I. (1986). Synaptic organization of the cone horizontal cells in the catfish retina. Journal of Comparative Neurology 245, 107115.CrossRefGoogle ScholarPubMed
Sarthy, P.V. & Fu, M. (1989). Localization of L-glutamic acid decarboxylase mRNA in cat retinal horizontal cells by in situ hybridization. Journal of Comparative Neurology 288, 593600.CrossRefGoogle ScholarPubMed
Schaeffer, S.R., Raviola, E. & Heuser, J.E. (1982). Membrane specializations in the outer plexiform layer of the turtle. Journal of Comparative Neurology 204, 253276.CrossRefGoogle ScholarPubMed
Schnapf, J.L., Kraft, T.W. & Baylor, D.A. (1987). Spectral sensitivity of human cone photoreceptors. Nature 325, 439441.CrossRefGoogle ScholarPubMed
Schnapf, J.L., Nunn, B.J., Meister, M. & Baylor, D.A. (1990). Visual transduction in cones of the monkey Macaca fascicularis. Journal of Physiology (London) 427, 681713.CrossRefGoogle ScholarPubMed
Schwartz, E.A. (1989 a). Calcium-independent release of GABA from isolated horizontal cells of the toad retina. Journal of Physiology (London) 323, 211227.CrossRefGoogle Scholar
Schwartz, E.A. (1989 b). Depolarization without calcium can release gamma-aminobutyric acid from a retinal neuron. Science 238, 350355.CrossRefGoogle Scholar
Siminoff, R. (1985). Modelling the effects of a negative feedback circuit from horizontal cells to cones on the impulse response of cones and horizontal cells. Biological Cybernetics 52, 307313.CrossRefGoogle ScholarPubMed
Siminoff, R. (1986 a). Dynamics of chromatic adaptation in cones of freshwater turtle. Biological Cybernetics 53, 347358.CrossRefGoogle ScholarPubMed
Siminoff, R. (1986 b). Dynamics of chromaticity horizontal cells in the freshwater turtle retina. Biological Cybernetics 54, 269279.CrossRefGoogle ScholarPubMed
Simon, E.J. (1973). Two types of luminosity horizontal cells in the retina of the turtle. Journal of Physiology (London) 230, 199211.CrossRefGoogle ScholarPubMed
Skryzpek, J. & Werblin, F.S. (1983). Lateral interactions in absence of feedback to cones. Journal of Neurophysiology 49, 10071016.CrossRefGoogle Scholar
Smith, R.G. & Sterling, P. (1990). Cone receptive field in cat retina computed from microcircuitry. Visual Neuroscience 5, 453461.CrossRefGoogle ScholarPubMed
Spekreijse, H. & Norton, A.L. (1970). The dynamic characteristics of color-coded S-potentials. Journal of General Physiology 56, 115.CrossRefGoogle ScholarPubMed
Stell, W.K. & Lightfoot, D.O. (1975). Color-specific interconnections of cones and horizontal cells in the retina of the goldfish. Journal of Comparative Neurology 159, 473501.CrossRefGoogle ScholarPubMed
Stell, W.K., Lightfoot, D.O., Wheeler, T.G. & Leeper, H.F. (1975). Goldfish retina: Functional polarization of horizontal cell densities and synapses. Science 190, 989990.CrossRefGoogle Scholar
Stone, S. & Witkovsky, P. (1987). Center-surround organization of Xenopus horizontal cells and its modification by gamma-aminobutyric acid and strontium. Experimental Biology 47, 112.Google ScholarPubMed
Stone, S. & Witkovsky, P. (1984). The actions of gamma-aminobutyric acid, glycine, and their antagonists upon horizontal cells of the Xenopus retina. Journal of Physiology (London) 353, 249264.CrossRefGoogle ScholarPubMed
Stone, S., Witkovsky, P. & Schütte, M. (1990). A chromatic horizontal cell in the Xenopus retina: Intracellular staining and synaptic pharmacology. Journal of Neurophysiology 64, 16831694.CrossRefGoogle ScholarPubMed
Svaetichin, G. & MacNicol, E.F. Jr, (1958). Retinal mechanisms for chromatic and achromatic vision. Annals of the New York Academy of Sciences 74, 385404.CrossRefGoogle Scholar
Tachibana, M. & Kaneko, A. (1984). Gamma-aminobutyric acid acts at axon terminals of turtle photoreceptors: Difference in sensitivity among cell types. Proceedings of the National Academy of Sciences of the U.S.A. 81, 79617964.CrossRefGoogle ScholarPubMed
Takahashi, K. & Murakami, M. (1991). Reversal potentials of color-opponent responses in horizontal cells of the carp retina. Vision Research 31, 11591166.CrossRefGoogle ScholarPubMed
Teranishi, T., Kato, S. & Negishi, K. (1982). Lateral spread of S-potential in the carp retina. Experimental Eye Research 34, 389399.CrossRefGoogle ScholarPubMed
Thoreson, W.B. & Burkhardt, D.A. (1990). Effects of synaptic blocking agents on the depolarizing responses of turtle cones evoked by surround illumination. Visual Neuroscience 5, 571583.CrossRefGoogle ScholarPubMed
Thoreson, W.B. & Burkhardt, D.A. (1991). Ionic influences on the prolonged depolarization of turtle cones in situ. Journal of Neurophysiology 65, 96110.CrossRefGoogle ScholarPubMed
Toyoda, J.-I. & Fujimoto, M. (1983). Analyses of neural mechanisms mediating the effect of horizontal cell polarization. Vision Research 23, 11431151.CrossRefGoogle ScholarPubMed
Tranchina, D., Gordon, J. & Shapley, R. (1983). Spatial and temporal properties of luminosity horizontal cells in the turtle retina. Journal of General Physiology 82, 573598.CrossRefGoogle ScholarPubMed
Tranchina, D., Gordon, J. & Shapley, R.M. (1984). Retina light adaptation-evidence for a feedback mechanism. Nature 310, 314316.CrossRefGoogle ScholarPubMed
Tranchina, D. & Peskin, C.S. (1988). Light adaptation in the turtle retina: Embedding a parametric family of linear models in a single nonlinear model. Visual Neuroscience 1, 339348.CrossRefGoogle Scholar
Wässle, H., Boycott, B.B. & Röhrenbeck, J. (1989). Horizontal cells in the monkey retina: Cone connections and dendritic network. European Journal of Neuroscience 1, 421435.CrossRefGoogle ScholarPubMed
Weiler, R. & Wagner, H.-J. (1984). Light-dependent change of cone horizontal cell interactions in carp retina. Brain Research 298, 19.CrossRefGoogle ScholarPubMed
Werblin, F.S. (1974). Control of retinal sensitivity. II. Lateral interactions at the outer plexiform layer. Journal of General Physiology 63, 6287.CrossRefGoogle Scholar
Wheeler, T.G. & Naka, K.-I. (1977). The modes of chromatic interactions in the retina. Vision Research 25, 10151018.CrossRefGoogle Scholar
Witkovsky, P. & Stone, S. (1987). Center-surround organization and its modification by gamma-aminobutyric acid and strontium. Experimental Biology 1, 112.Google Scholar
Wu, S.M. (1986). Effects of gamma-aminobutyric acid on cones and bipolar cells of the tiger salamander. Brain Research 365, 7077.CrossRefGoogle ScholarPubMed
Wu, S.M. (1991). Input-output relations of the feedback synapse between horizontal cells and cones in the tiger salamander retina. Journal of Neurophysiology 65, 11971206.CrossRefGoogle ScholarPubMed
Wu, S.M. (1992). Feedback connections and operation of the outer plexiform layer of the retina. Current Opinion in Neurobiology 2, 462468.CrossRefGoogle ScholarPubMed
Wu, S.M. & Dowling, J.E. (1980). Effects of GABA and glycine on the distal cells of the cyprinid retina. Brain Research 199, 401414.CrossRefGoogle ScholarPubMed
Yagi, T. & MacLeisch, P.R. (1989). Large calcium-activated current in solitary primate cones. Investigative Ophthalmology and Visual Science (Suppl.) 30, 62.Google Scholar
Yamada, M., Shigematsu, Y. & Fuwa, M. (1985). Latency of horizontal cell response in the carp retina. Vision Research 25, 767774.CrossRefGoogle ScholarPubMed
Yang, X.L. & Wu, S.M. (1991). Feedforward lateral inhibition in retinal bipolar cells: Input-output relation of the horizontal cell-depolarizing bipolar cell synapse. Proceedings of the National Academy of Sciences of the U.S.A. 88, 33103313.CrossRefGoogle ScholarPubMed
Yazulla, S. (1976 a). Cone input to bipolar cells in turtle retina. Vision Research 16, 737744.CrossRefGoogle ScholarPubMed
Yazulla, S. (1976 b). Cone input to horizontal cells in the turtle retina. Vision Research 16, 727735.CrossRefGoogle ScholarPubMed
Yazulla, S. (1986). GABAergic mechanisms in the retina. Progress in Retinal Research 5, 152.CrossRefGoogle Scholar
Yazulla, S. & Kleinschmidt, J. (1983). Carrier-mediated release of from retinal horizontal cells. Brain Research 263, 6375.CrossRefGoogle ScholarPubMed