Skip to main content Accessibility help
×
Home

Selective depletion of beta cells affects the development of alpha cells in cat retina

  • Steven J. Ault (a1), Kirk G. Thompson (a1), Yifeng Zhou (a2) and Audie G. Leventhal (a1)

Abstract

The results of previous studies suggest that class-specific interactions contribute to the development of the different classes of retinal ganglion cells. We tested this hypothesis by examining the morphologies and distributions of alpha (α) cells in regions of mature cat retina selectively depleted of beta (β) cells as a result of visual cortex lesions at birth. We find that α cells in regions of central retina depleted of β cells are abnormally large while α cells in regions of peripheral retina depleted of β cells are abnormally small. The normal central-to-peripheral α cell soma-size gradient is absent in hemiretinae depleted of β cells. The dendritic fields of α cells in the border of β-cell-depleted hemiretina extend preferentially into the β-cell-poor hemiretina. In spite of this, α cell bodies retain their normal retinal distribution and remain distributed in a nonrandom mosaic-like pattern. Thus, it appears that the development of α retinal ganglion cells is influenced by interactions both with other α cells (class-specific interactions) and with surrounding β cells (nonclass-specific interactions).

Copyright

References

Hide All
Ault, S.J. & Leventhal, A.G. (1988). Postnatal development of cat retinal ganglion cell structure. Society for Neuroscience Abstracts 14, 459.
Ault, S.J., Thompson, K.G., Zhou, Y. & Leventhal, A.G. (1990 a). The density of beta cells affects the sizes of alpha cells in cat retina. Society for Neuroscience Abstracts 16, 334.
Ault, S.J., Zhou, Y., Thompson, K.G. & Leventhal, A.G. (1990 b). Receptive field properties of LGNd relay cells in optic tract sectioned cats. Investigative Ophthalmology and Visual Science 31(4), 395.
Ault, S.J., Thompson, K.G., Zhou, Y. & Leventhal, A.G. (1991). Mechanisms mediating cat retinal ganglion cell development. Society for Neuroscience Abstracts 17, 186.
Batschelet, E. (1981). Circular Statistics in Biology. London: Academic Press.
Boycott, B.B. & Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat’s retina. Journal of Physiology (London) 240, 397419
Cleland, B.G. & Levick, W.R. (1974 a). Brisk and sluggish concentrically organized ganglion cells in the cat’s retina. Journal of Physiology (London) 240, 421456
Cleland, B.G. & Levick, W.R. (1974 b). Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. Journal of Physiology (London) 240, 457492
Cleland, B.G., Levick, W.R. & Wässle, H. (1975). Physiological identification of a morphological class of cat retinal ganglion cells. Journal of Physiology (London) 248, 151171
Cooper, M.L. & Pettigrew, J.D. (1979). The decussation of the retinothalamic pathway in the cat, with a note on the major meridians of the cat’s eye. Journal of Comparative Neurology 187, 285312
Dann, J.F., Buhl, E.H. & Peichl, L. (1987). Dendritic maturation in cat retinal ganglion cells: A lucifer yellow study. Neuroscience Letters 80, 2126
Dann, J.F., Buhl, E.H. & Peichl, L. (1988). Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina. Journal of Neuroscience 8, 14851499
Enroth-Cugell, C. & Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology (London) 187, 517552
Eysel, U.T., Peichl, L. & Wässle, H. (1985). Dendritic plasticity in the early postnatal feline retina: Quantitative characteristics and sensitive period. Journal of Comparative Neurology 242, 134145
Freed, M.A. & Sterling, P. (1988). The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. Journal of Neuroscience 8, 23032320
Fukuda, Y. & Stone, J. (1974). Retinal distribution and central projections of Y-, X- and W-cells of the cat’s retina. Journal of Neurophysiology 37, 749772
Humphreys, T. (1972). Cell contact, contact inhibition of growth and the regulation of macromolecular metabolism. In Cell Interactions, Proceedings of the Third Lepetit Colloquium, ed. Silvestri, L.G., pp. 264276. Amsterdam: North-Holland Publishing Co.
Illing, R.-B. & Wässle, H. (1981). The retinal projection to the thalamus in the cat: A quantitative investigation and a comparison with the retinotectal pathway. Journal of Comparative Neurology 202, 265285
Jeffery, G., Whitmore, A. & Grant, S. (1992). The mosaic of alpha cells in the cat retina is not dependent on axon terminal interactions during development. Journal of Comparative Neurology 317, 298308
Kalil, R.E. (1980). Retrograde degeneration of retinal ganglion cells following removal of visual cortex in the newborn kitten. Society for Neuroscience Abstracts 790, 6.
Kirby, M.A. & Chalupa, L.M. (1986). Retinal crowding alters the morphology of alpha ganglion cells. Journal of Comparative Neurology 251, 532541
Kirk, D.L., Levick, W.R., Cleland, B.G. & Wässle, H. (1976). Crossed and uncrossed representations of the visual field by brisk-sustained and brisk-transient cat retinal ganglion cells. Vision Research 16, 225231
Leventhal, A.G. (1982). Morphology and distribution of retinal ganglion cells projecting to different layers of the dorsal lateral geniculate nucleus in normal and Siamese cats. Journal of Neuroscience 2, 10241042
Leventhal, A.G., Ault, S.J., Vitek, D.J. & Shou, T. (1989). Extrinsic determinants of retinal ganglion cell development in primates. Journal of Comparative Neurology 286, 170189
Leventhal, A.G., Rodieck, R. & Dreher, B. (1985). Central projections of cat retinal ganglion cells. Journal of Comparative Neurology 237, 216226
Leventhal, A.G. & Schall, J.D. (1983). Structural basis of orientation sensitivity of cat retinal ganglion cells. Journal of Comparative Neurology 220, 465475
Leventhal, A.G., Schall, J.D. & Ault, S.J. (1988). Extrinsic determinants of retinal ganglion cell structure in the cat. Journal of Neuroscience 8, 20282038
Levick, W.R. & Thibos, L.N. (1982). Analysis of orientation bias in cat retina. Journal of Physiology (London) 329, 243261
Mardia, K.V. (1972). Statistics of Directional Data. New York: Academic Press.
Maslim, J., Webster, M. & Stone, J. (1986). Stages in the structural differentiation of retinal ganglion cells. Journal of Comparative Neurology 254, 382402
Payne, B.R., Pearson, H.E. & Cornwall, P. (1984). Transneuronal degeneration of beta retinal ganglion cells in the cat. Proceedings of the Royal Society 222, 1532
Peichl, L. & Wässle, H. (1981). Morphological identification of on-and off-centre brisk transient (Y) cells in the cat retina. Proceedings of the Royal Society 212, 139156
Perry, V.H. & Linden, R. (1982). Evidence for dendritic competition in the developing retina. Nature 297, 683685
Ramoa, A.S., Campbell, G. & Shatz, C (1987). Transient morphological features of identified ganglion cells in living fetal and neonatal retina. Science 237, 522525
Ramoa, A.S., Campbell, G. & Shatz, C. (1988). Dendritic growth and remodeling of cat retinal ganglion cells during fetal and postnatal development. Journal of Neuroscience 8, 42394261
Rapaport, D.H. & Stone, J. (1983). Time course of morphological differentiation of cat retinal ganglion cells: Influences on soma size. Journal of Comparative Neurology 221, 4252
Rowe, M.H. (1990). Evidence for degeneration of retinal W cells following early visual cortical removal in cats. Brain, Behavior and Evolution 35, 253267
Schall, J.D., Ault, S.J., Vitek, D.J. & Leventhal, A.G. (1988). Experimental induction of an abnormal ipsilateral visual field representation in the geniculocortical pathway of normally pigmented cats. Journal of Neuroscience 8, 20392048
Schall, J.D. & Leventhal, A.G. (1987). Relationships between ganglion cell dendritic structure and retinal topography in the cat. Journal of Comparative Neurology 257, 149159
Schall, J.D., Vitek, D.J. & Leventhal, A.G. (1986). Retinal constraints on orientation specificity in the cat visual cortex. Journal of Neuroscience 6, 823836
Shou, T. & Leventhal, A.G. (1989). Organized arrangement of orientation sensitive relay cells in the cat’s lateral geniculate nucleus. Journal of Neuroscience 9, 42874302
Stone, J. (1966). The naso-temporal division of the cat’s retina. Journal of Comparative Neurology 136, 585600
Stone, J. & Fukuda, Y. (1974). Properties of the cat retinal ganglion cells: A comparison of W-cells with X- and Y-cells. Journal of Neurophysiology 37, 722748
Sur, M., Esguerra, M., Garraghty, P.E., Kritzer, M.F. & Sherman, S.M. (1987). Morphology of physiologically identified retinogeniculate X- and Y-cell axons in the cat. Journal of Neurophysiology 58, 132
Sur, M. & Sherman, S.M. (1982). Retinogeniculate terminations in cats: Morphological differences between X and Y cell axons. Science 218, 389391
Wässle, H. & Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiological Reviews 71(2), 447478
Wässle, H., Peichl, L. & Boycott, B.B. (1981 a). Dendritic territories of cat retinal ganglion cells. Nature 292, 344345
Wässle, H., Peichl, L. & Boycott, B.B. (1981 b). Morphology and topography of on- and off-alpha cells in cat retina. Proceedings of the Royal Society B (London) 212, 157175
Wässle, H., Boycott, B.B. & Illing, R.-B. (1981 C). Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proceedings of the Royal Society B (London) 212, 177195
Wässle, H. & Riemann, H.J. (1978). The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society 200, 441461
Wörgötter, F. & Eysel, U.T. (1987). Quantitative determination of orientation and direction components in the response of visual cortical cells to moving stimuli. Biological Cybernetics 57, 349355
Zar, J.H. (1974). Circular distributions. In Biostatistical Analysis, pp. 310328. Englewood Cliffs, New Jersey: Prentice-Hall.

Keywords

Related content

Powered by UNSILO

Selective depletion of beta cells affects the development of alpha cells in cat retina

  • Steven J. Ault (a1), Kirk G. Thompson (a1), Yifeng Zhou (a2) and Audie G. Leventhal (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.