Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T01:52:31.968Z Has data issue: false hasContentIssue false

The retinal ganglion cell distribution and the representation of the visual field in area 17 of the owl monkey, Aotus trivirgatus

Published online by Cambridge University Press:  02 June 2009

L. C. L. Silveira
Affiliation:
Departamento de Fisiologia, Centro de Ciências Biológicas, Universidade Federal do Pará, 66075–900 Belém, Pará, Brasil
V. H. Perry
Affiliation:
Department of Pharmacology, University of Oxford, Oxford OX1 3QT, England
E. S. Yamada
Affiliation:
Departamento de Fisiologia, Centro de Ciências Biológicas, Universidade Federal do Pará, 66075–900 Belém, Pará, Brasil

Abstract

The distribution of ganglion cells and displaced amacrine cells was determined in whole-mounted Aotus retinae. In contrast to diurnal simians, Aotus has only a rudimentary fovea. Ganglion cell density decreases towards the periphery at approximately the same rate along all meridians, but is 1.2–1.8 times higher in the nasal periphery when compared to temporal region at the same eccentricities. The total number of ganglion cells varied from 421,500 to 508,700. Ganglion cell density peaked at 15,000/mm2 at 0.25 mm dorsal to the fovea. The displaced amacrine cells have a shallow density gradient, their peak density in the central region is about 1500–2000/mm2 and their total number varied from 315,900 to 482,800. Comparison between ganglion cell density and areal cortical magnification factor for the primary visual cortex, area 17, shows that there is not a simple proportional representation of the ganglion cell distribution. There is an overrepresentation of the central 10 deg of the visual field in the visual cortex. The present results for Aotus and the results of a similar analysis of data from other primates indicate that the overrepresentation of the central visual field is a general feature of the visual system of primates.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allman, J.M. & Kaas, J.H. (1971). Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Research 35, 89–106.CrossRefGoogle ScholarPubMed
Douglas, R.J., Martin, K.A.C. & Whitteridge, D. (1989). A canonical microcircuit for neocortex. Neural Computation 1, 480–488.CrossRefGoogle Scholar
Drasdo, N. & Fowler, C.W. (1974). Non-linear projection of the retinal image in a wide-angle schematic eye. British Journal of Ophthalmology 58, 709–714.CrossRefGoogle ScholarPubMed
Henry, G.H. & Vidyasagar, T.R. (1991). Evolution of mammalian visual pathways. In Vision and Visual Dysfunction, ed. Cronly-Dillop, J.R., Vol. 2—Evolution of the Eye and Visual System, ed. Cronly-Dillon, J.R. & Gregory, I.R., pp. 442465. Houndmills, Basingstoke, England: The Macmillan Press, Ltd.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society B (London) 198, 1–59.Google ScholarPubMed
Hughes, A. & Vaney, D.I. (1980). Coronate cells: Displaced amacrines of the rabbit retina? Journal of Comparative Neurology 189, 169–189.CrossRefGoogle ScholarPubMed
Hughes, A. & Wienlawa-Narkiewicz, E. (1980). A newly identified population of presumptive microneurones in the cat retinal ganglion cell layer. Nature 284, 468–470.CrossRefGoogle ScholarPubMed
LeVay, S. & Nelson, S.B. (1991). Columnar organization of the visual cortex. In Vision and Visual Dysfunction, ed. Cronly-Dillon, J.R., Vol. 4–The Neural Basis of Visual Function, ed. Leventhal, A.G., pp. 266315. Houndmills, Basingstoke, England: The Macmillan Press, Ltd.Google Scholar
Lima, S.M.A., Silveira, L.C.L. & Perry, V.H. (1992). Distribuição das células ganglionares Mem retina de Cebus. Resumos da VII Reunião Anual de Federação de Sociedades de Biologia Experimental, Caxambú, 38.Google Scholar
Myerson, J., Manis, P.B., Miezin, F.M. & Allman, J.M. (1977). Magnification in striate cortex and retinal ganglion cell layer of owl monkey: A quantitative comparison. Science 192, 855–857.CrossRefGoogle Scholar
Ogden, T.E. & Miller, R.F. (1966). Studies of the optic nerve of the rhesus monkey: Nerve fibre spectrum and physiological properties. Vision Research 6, 485–506.CrossRefGoogle ScholarPubMed
Oswaldo-Cruz, E., Picanço-Diniz, C.W., Pompeu, M.S. & Silveira, L.C.L. (1990). Asymmetries of the representation of the contralat-eral visual field on area 17 of the cortex of the anaesthetized agouti do not match the retinal ganglion-cell regional densities. Journal of Physiology (London) 422, 8 P.Google Scholar
Packer, O., Hendrickson, A.E. & Curcio, C.A. (1989). Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina). Journal of Comparative Neurology 288, 165–183.CrossRefGoogle ScholarPubMed
Perry, V.H. (1979). The ganglion cell layer of the retina of the rat: A Golgi study. Proceedings of the Royal Society B (London) 204, 363–375.Google Scholar
Perry, V.H. (1981). Evidence for an amacrine cell system in the ganglion cell layer of the rat retina. Neuroscience 6, 931–944.CrossRefGoogle ScholarPubMed
Perry, V.H. & Cowey, A. (1985). The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors. Vision Research 25, 1795–1810.CrossRefGoogle ScholarPubMed
Perry, V.H. & Cowey, A. (1988). The lengths of the fibres of Henle in the retina of macaque monkeys: Implications for vision. Neuroscience 25, 225–236.CrossRefGoogle ScholarPubMed
Perry, V.H. & Walker, M. (1980). Amacrine cells, displaced amacrine cells, and interplexiform cells in the retina of the rat. Proceedings of the Royal Society B (London) 208, 433–445.Google ScholarPubMed
Perry, V.H., Oehler, R. & Cowey, A. (1984). Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12, 1101–1123.CrossRefGoogle Scholar
Picanço-Diniz, C.W. (1987). Organização do Sistema Visual de Roedores da Amazônia: Topografia das Áreas Visuais da Cutia, Dasyprocta aguti. Ph.D. Thesis. Rio de Janeiro: Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro.Google Scholar
Picanço-Diniz, C.W., Silveira, L.C.L., De Carvalho, M.S.P. & Oswaldo-Cruz, E. (1991). Contralateral visual field representation in area 17 of the cerebral cortex of the agouti: A comparison between the cortical magnification factor and retinal ganglion cell distribution. Neuroscience 44, 325–333.CrossRefGoogle ScholarPubMed
Picanço-Diniz, C.W., Silveira, L.C.L., Yamada, E.S. & Martin, K.A.C. (1992 a). Biocytin as a retrograde tracer in the mammalian visual system. Brazilian Journal of Medical and Biological Research 25, 57–62.Google ScholarPubMed
Picanço-Diniz, C.W., Silveira, L.C.L. & Oswaldo-Cruz, E. (1992 b). A comparative survey of magnification factor in V1 and retinal ganglion cell topography of lateral eyed mammals. In The Visual System from Genesis to Maturity, ed. Lent, R., pp. 186197. Boston, Massachusetts: Birkhauser.Google Scholar
Potts, A.M., Hodges, D., Shelman, C.B., Frity, K.J., Levy, N.S. & Magnall, Y. (1972). Morphology of the primate optic nerve. I. Method and total fibre count. Investigative Ophthalmology and Visual Science 11, 981–988.Google Scholar
Rakic, P. & Riley, K.P. (1983). Overproduction and elimination of retinal axons in the fetal rhesus monkey. Science 219, 1441–1444.CrossRefGoogle ScholarPubMed
Rolls, E.T. & Cowey, A. (1970). Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys. Experimental Brain Research 10, 298–310.CrossRefGoogle ScholarPubMed
Schein, S.J. (1988). Anatomy of macaque fovea and spatial densities of neurons in foveal representation. Journal of Comparative Neurology 269, 479–505.CrossRefGoogle ScholarPubMed
Schein, S.J. & de Monasterio, F.M. (1987). Mapping of retinal and geniculate neurons onto striate cortex of macaque. Journal of Neuroscience 7, 996–1009.CrossRefGoogle ScholarPubMed
Shu, S., Ju, G. & Fan, L. (1988). The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neuroscience Letters 85, 169–171.CrossRefGoogle ScholarPubMed
Silveira, L.C.L., Picanço-Diniz, C.W., Sampaio, L.F.S. & Oswaldo-Cruz, E. (1989). Retinal ganglion cell distribution in the Cebus monkey: A comparison with the cortical magnification factors. Vision Research 29, 1471–1483.CrossRefGoogle ScholarPubMed
Silveira, L.C.L. & Perry, V.H. (1991). The topography of magno-cellular projecting ganglion cells (M-ganglion cells) in the primate retina. Neuroscience 40, 217–237.CrossRefGoogle Scholar
Tolhurst, D.J. (1989). Cortical magnification and peripheral innervation density. In Seeing Contour and Colour, ed. Kulikowski, J. J., Dickinson, C.M. & Murray, I.J., pp. 617677. Oxford: Pergamon Press.Google Scholar
Tootell, R.B.H., Switkes, E., Silverman, M.S. & Hamilton, S.L. (1988). Functional anatomy of macaque striate cortex. II. Retino-topic organization. Journal of Neuroscience 8, 1531–1568.CrossRefGoogle Scholar
Van Essen, D.C., Newsome, W.T. & Maunsell, J.H.R. (1984). The visual-field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vision Research 24, 429–448.CrossRefGoogle ScholarPubMed
Vaney, D.I. (1980). A quantitative comparison between the ganglion cell populations and axonal outflows of the visual streak and periphery of the rabbit retina. Journal of Comparative Neurology 189, 215–233.CrossRefGoogle ScholarPubMed
WäSsle, H. (1982). Morphological types and central projections of ganglion cells in the cat retina. In Progress in Retinal Research, Vol. I, ed. Osborne, N. & Chader, G., pp. 125152. Oxford: Pergamon Press.Google Scholar
Wässle, H., GrüNert, U., Röhrenbeck, J. & Boycott, B.B. (1989). Cortical magnification factor and the ganglion cell density of the primate retina. Nature 341, 643–646.CrossRefGoogle ScholarPubMed
Wässle, H., Grünert, U., Röhrenbeck, J. & Boycott, B.B. (1990). Retinal ganglion cell density and cortical magnification factor in the primate retina. Vision Research 11, 1897–1911.CrossRefGoogle Scholar
Webb, S.V. & Kaas, J.H. (1976). The sizes and distribution of ganglion cells in the retina of the owl monkey, Aotus trivirgatus. Vision Research 16, 1247–1254.CrossRefGoogle ScholarPubMed
Weibel, E.R. (1969). Stereological principle for morphometry in electron microscopic cytology. International Review of Cytology 26, 235–301.CrossRefGoogle ScholarPubMed
Wong, R.O.L. & Hughes, A. (1987). The morphology, number, and distribution of a large population of confirmed displaced amacrine cells in the adult cat retina. Journal of Comparative Neurology 255, 159–177.CrossRefGoogle ScholarPubMed