Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-06T07:55:53.508Z Has data issue: false hasContentIssue false

Peptidergic neurons of teleost retinas

Published online by Cambridge University Press:  02 June 2009

David W. Marshak
Affiliation:
Department of Neurobiology and Anatomy, University of Texas Medical School, Houston

Abstract

In retinas of teleost fish, neuropeptides typically have subtle, modulatory actions. The peptide effects typically have long latencies and durations, and, in some instances, they are known to be mediated by second messengers. Peptidergic neurons in teleost retinas have certain morphological features in common that are consistent with their function. Most peptidergic neurons are stratified amacrine cells with long, varicose processes; the processes of peptidergic centrifugal axons are also narrowly stratified and ramify extensively in the retina. The peptidergic amacrine cells are relatively infrequent, and, likewise, the centrifugal axons originate from a small number of perikarya in the brain. Cells that are so sparsely distributed and whose processes overlap so extensively are better-suited for modulation than for conveying detailed representations of visual space.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldrich, L.B., Takami, M. & Yamada, T. (1987). Post-translational processing of pro-cholecystokinin in the retina. Investigative Ophthalmology and Visual Sciences (Suppl.) 28, 353.Google Scholar
Alonso, J.R., Coveñas, J., Lara, J., De León, M., Arévalo, R. & Auón, J. (1989). Substance P-like immunoreactivity in the ganglion cells of the tench terminal nerve. Neuroscience Letters 106, 253257.CrossRefGoogle ScholarPubMed
Ayoub, G.S. & Lam, D.M.K. (1984). The release of gamma amino butyric acid from horizontal cells of the goldfish retina. Journal of Physiology 355, 191214.CrossRefGoogle Scholar
Ball, A.K., Stell, W.K. & Tutton, D.A. (1989). Efferent projections to the goldfish retina. In Neurobiology of the Inner Retina, ed. Weiler, R. & Osborne, N.N., pp. 103116. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Brecha, N.C. & Karten, H.J. (1985). Localization of biologically active peptides in the retina. In Retinal Transmitters and Modulators: Models for the Brain, ed. Morgan, W. W., pp. 93119. Boca Raton: CRC Press.Google Scholar
Brecha, N., Sharma, S.C. & Karten, H.J. (1981). Localization of substance P-like immunoreactivity in the adult and developing goldfish retina. Neuroscience 6, 27372746.CrossRefGoogle ScholarPubMed
Bruun, A., Ehinger, B. & Tornqvist, K. (1986a). NPY immunoreactive neurons in the vertebrate retina. In Retinal Signal Systems, Degenerations and Transplants, ed. Agardh, E. & Ehinger, B., pp. 89103. New York: Elsevier Science.Google Scholar
Bruun, A., Tornqvist, K. & Ehinger, B. (1986b). Neuropeptide Y (NPY) immunoreactive neurons in the retina of different species. Histochemistry 86, 135140.CrossRefGoogle ScholarPubMed
Djamgoz, M.B.A., Downing, J.E.G. & Prince, D.J. (1983). Physiology of neuroactive peptides in vertebrate retina. Biochemical Society Transactions 11, 686689.CrossRefGoogle ScholarPubMed
Djamgoz, M.B.A., Stell, W.K., Chin, C.-A. & Lam, D.M.K. (1981). An opiate system in the goldfish retina. Nature 292, 620623.CrossRefGoogle ScholarPubMed
Douglas, R.H. & Djamgoz, M.B.A. (1990). The Visual System of Fish. New York: Chapman and Hall.CrossRefGoogle Scholar
Ekman, R. & Tornqvist, K. (1985). Glucagon and VIP in the retina. Investigative Ophthalmology and Visual Sciences 26, 14051409.Google ScholarPubMed
Eldred, W.D., Li, H.-B., Carraway, R.E. & Dowling, J.E. (1987). Immunocytochemical localization of LANT-6-like immunoreactivity within neurons in the inner nuclear and ganglion cell layers in vertebrate retinas. Brain Research 424, 361370.CrossRefGoogle ScholarPubMed
Eskay, R.L., Long, R.T. & Iuvone, P.M. (1980). Evidence that TRH, somatostatin and substance P are present in neurosecretory elements of the vertebrate retina. Brain Research 196, 449554.CrossRefGoogle ScholarPubMed
Glickman, R.D., Adolph, A.R. & Dowling, J.E. (1982). Inner plexiform circuits in the carp retina: Effects of cholinergic agonists, GABA, and substance P on the ganglion cells. Brain Research 234, 8199.CrossRefGoogle ScholarPubMed
Kawamata, K., Ohtsuka, T. & Stell, W.K. (1990). Electron microscopical study of immunocytochemically labeled centrifugal fibers in the goldfish retina. Journal of Comparative Neurology 293, 655664.CrossRefGoogle ScholarPubMed
Lasater, E.M., Watling, K.J. & Dowling, J.E. (1983). Vasoactive intestinal peptide alters membrane potential and cyclic nucleotide levels in retinal horizontal cells. Science 224, 10701072.CrossRefGoogle Scholar
Li, H.-B., Marshak, D.W., Dowling, J.E. & Lam, D.M.-K. (1986). Colocalization of immunoreactive substance P and neurotensin in amacrine cells of the goldfish retina. Brain Research 366, 307313.Google ScholarPubMed
Marc, R.E., Liu, W.S., Scholz, K. & Muller, J.F. (1988). Serotonergic and serotonin accumulating neurons in the goldfish retina. Journal of Neuroscience 8, 34273450.CrossRefGoogle ScholarPubMed
Marshak, D., Ariel, M. & Brown, E. (1988). Distribution of synaptic inputs onto goldfish retinal ganglion cell dendrites. Experimental Eye Research 46, 965978.CrossRefGoogle ScholarPubMed
Marshak, D.W., Yamada, T. & Stell, W.K. (1984). Synaptic contacts of somatostatin-immunoreactive amacrine cells in goldfish retina. Journal of Comparative Neurology 225, 4452.CrossRefGoogle ScholarPubMed
Miller, R.G., Baldridge, W.H. & Ball, A.K. (1986). VIP modulation of horizontal cell axon terminal gap junction particle density. Society for Neuroscience Abstracts 12, 642.Google Scholar
Munz, H., Claas, B., Stumpf, W.E. & Jennes, L. (1982). Centrifugal innervation of the retina by luteinizing hormone releasing hormone (LHRH)-immunoreactive telencephalic neurons in teleostean fishes. Cell and Tissue Research 222, 313323.CrossRefGoogle ScholarPubMed
Muske, L.E., Dockray, G.J., Chohan, K.S. & Stell, W.K. (1987). Segregation of FMRF amide-immunoreactive efferent fibers from NPY-immunoreactive amacrine cells in goldfish retina. Cell and Tissue Research 247, 299307.CrossRefGoogle ScholarPubMed
Ohtsuka, T., Kawamata, K. & Stell, W. (1989). Immunocytochemical studies of centrifugal fibers in the goldfish retina. Neuroscience Research (Suppl.) 10, S141–S15O.Google ScholarPubMed
Osborne, N.N., Patel, S., Terenghi, G., Allen, J.M., Polak, J.M. & Bloom, S.R. (1985). Neuropeptide Y (NPY)-like immunoreactive amacrine cells in retinas of frog and goldfish. Cell and Tissue Research 241, 651656.CrossRefGoogle ScholarPubMed
Sakanaka, M., McMaster, D., Chohan, K., Shibasaki, T., Stell, W.K. & Lederis, K. (1987). Urotensin I-like immunoreactivity in amacrine cells of the goldfish retina. Neuroscience Letters 76, 96100.CrossRefGoogle ScholarPubMed
Stell, W.K. (1985). Putative peptide transmitters, amacrine cell diversity and function in the inner plexiform layer. In Neurocircuitry of the Retina: A Cajal Memorial, ed. Gallego, A. & Gouras, P., pp. 171187. New York: Elsevier Science.Google Scholar
Stell, W.K., Ball, A.K., Chohan, K.S., Djamgoz, M.B.A., Downing, J.E.G., Kyle, A.L., Muske, L.E. & Walker, S.E. (1986). Colocalization of neuroactive substances, and its functional significance, in the cyprinid fish retina. In Retinal Signal Systems: Degenerations and Transplants, ed. Agardh, E. & Ehinger, B., pp. 7387. New York: Elsevier Science.Google Scholar
Stell, W.K. & Walker, S.E. (1987). Functional-anatomical studies on the terminal nerve projection to the retina of bony fishes. Annals of the New York Academy of Sciences 519, 8096.CrossRefGoogle Scholar
Stell, W.K., Walker, S.E., Chohan, K.S. & Ball, A.K. (1984). The goldfish nervus terminalis: A luteinizing hormone-releasing hormone and molluscan cardioexciatatory peptide immunoreactive olfactoretina pathway. Proceedings of the National Academy of Sciences of the U.S.A. 81, 940944.CrossRefGoogle ScholarPubMed
Su, Y.Y.T., Fry, K.R., Lam, D.M.-K. & Watt, C.B. (1986). Enkephalin in the goldfish retina. Cellular and Molecular Neurobiology 6, 331347.CrossRefGoogle ScholarPubMed
Tornqvist, K. & Ehinger, B. (1983). Glucagon immunoreactive neurons in the retina of different species. Graefe's Archives of Ophthalmology 220, 15.CrossRefGoogle ScholarPubMed
Tornqvist, K., Uddman, R., Sundler, F. & Ehinger, B. (1982). Somatostatin and VIP neurons in the retina of different species. Histochemistry 76, 137152.CrossRefGoogle ScholarPubMed
Umino, O. & Dowling, J.E. (1988). The effects of LHRH and FMRF-amide on horizontal cells in the white perch retina. Investigative Ophthalmology and Visual Sciences (Suppl.) 29, 102.Google Scholar
Umino, O. & Dowling, J.E. (1989). The effects of bicuculline and enkephalin on horizontal cells in the white perch retina. Investigative Ophthalmology and Visual Sciences (Suppl.) 30, 17.Google Scholar
Wagner, H.-J. & Zeutsius, I. (1987). Amacrine cells with neurotensin- and somatostatin-like immunoreactives in three species of teleosts with different color vision. Cell and Tissue Research 76, 663673.CrossRefGoogle Scholar
Walker, S.E. & Stell, W.K. (1986). Gonadotropin-releasing hormone (GnRH), molluscan cardioexcitatory peptide (FMRFamide), enkephalin and related neuropeptides affect goldfish retinal ganglion cell activity. Brain Research 384, 262273.CrossRefGoogle ScholarPubMed
Watling, K.J. & Dowling, J.E. (1983). Effects of vasoactive intestinal peptide and other peptides on cyclic AMP accumulation in intact pieces and isolated horizontal cells of the teleost retina. Journal of Neurochemicstry 41, 12051213.CrossRefGoogle ScholarPubMed
Watt, C.B. (1989). Synaptic organization of enkephalin-like-immunoreactive amacrine cells in the goldfish retina. Journal of Comparative Neurology 283, 333341.CrossRefGoogle Scholar
Watt, C.B., Glazebrook, P.A. & Lam, D.M.K. (1986a). Enkephalins in the teleost retina: Localization and coexistence with gamma-aminobutyric acid (GABA). Investigative Ophthalmology and Visual Sciences (Suppl.) 27, 231.Google Scholar
Watt, C.B., Yu, B.C.-Y., Su, Y.Y.T. & Lam, D.M.-K. (1986b). The localization, biosynthesis and release of substance-P-like immunoreactivity in the catfish retina. Society for Neuroscience Abstracts 12, 642.Google Scholar
Yamada, T., Marshak, D., Basinger, S., Walsh, J., Morley, J. & Stell, W. (1980). Somatostatin-like immunoreactivity in the retina. Proceedings of the National Academy of Sciences of the U.S.A. 77, 16911695.CrossRefGoogle ScholarPubMed
Yazulla, S., Studholme, K.M. & Zucker, C.L. (1985). Synaptic Organization Of Substance P-Like Immunoreactive Amacrine Cells In Goldfish Retina. Journal of Comparative Neurology 231, 232238.CrossRefGoogle ScholarPubMed
Zucker, C.L. & Dowling, J.E. (1987). Centrifugal fibres synapse on dopaminergic interplexiform cells in the teleost retina. Nature 330, 166168.CrossRefGoogle ScholarPubMed