Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T21:44:06.541Z Has data issue: false hasContentIssue false

A new interpretation of components in the ERG signals to sine wave luminance stimuli at different temporal frequencies and contrasts

Published online by Cambridge University Press:  26 August 2010

GOBINDA PANGENI
Affiliation:
Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
FOLKERT K. HORN
Affiliation:
Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
JAN KREMERS*
Affiliation:
Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany School of Life Sciences, University of Bradford, Bradford, UK
*
*Address correspondence and reprint requests to: Jan Kremers, Department of Ophthalmology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany. E-mail: jan.kremers@uk-erlangen.de

Abstract

Full-field electroretinograms were recorded from five normal human subjects using white light (mean luminance: 250 cd/m2) sine wave stimuli at different frequencies and contrasts. In agreement with previous studies, we found that the amplitude of the fundamental component displayed a dip at about 12 Hz, coinciding with a maximum in the second harmonic component, indicating frequency doubling of the responses. By including measurements at different contrasts, we were able to recognize two (sine-like and transient) response components. We found that the waveform of the transient response was relatively frequency independent. An algorithm to separate the two components was developed. The interaction between these two components can explain the frequency-doubled responses around 12 Hz. The sine-like component is more linear and prominent in the low-frequency region, whereas the transient seems to be more nonlinear and prominent in the high-frequency region.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, F.A., Alpern, M. & Kirk, D.B. (1985). Electroretinograms evoked by sinusoidal excitation of human cones. The Journal of Physiology 363, 135150.CrossRefGoogle ScholarPubMed
Baker, C.L. Jr & Hess, R.F. (1984). Linear and nonlinear components of human electroretinogram. Journal of Neurophysiology 51, 952967.CrossRefGoogle ScholarPubMed
Baker, C.L. Jr, Hess, R.R., Olsen, B.T. & Zrenner, E. (1988). Current source density analysis of linear and non-linear components of the primate electroretinogram. The Journal Physiology. London 407, 155176.CrossRefGoogle ScholarPubMed
Baron, W.S. & Boynton, R.M. (1975). Response of primate cones to sinusoidally flickering homochromatic stimuli. The Journal of Physiology 246, 311331.CrossRefGoogle ScholarPubMed
Baron, W.S., Boynton, R.M. & Hammon, R.W. (1979). Component analysis of the foveal local electroretinogram elicited with sinusoidal flicker. Vision Research 19, 479490.CrossRefGoogle ScholarPubMed
Burns, S.A., Elsner, A.E. & Kreitz, M.R. (1992). Analysis of nonlinearities in the flicker ERG. Optometry and Vision Science 69, 95105.CrossRefGoogle ScholarPubMed
Bush, R.A. & Sieving, P.A. (1996). Inner retinal contributions to the primate photopic fast flicker electroretinogram. Journal of the Optical Society of America. A 13, 557565.CrossRefGoogle Scholar
Falsini, B., Iarossi, G., Fadda, A., Porrello, G., Valentini, P., Piccardi, M. & Scullica, L. (1999). The fundamental and second harmonic of the photopic flicker electroretinogram: Temporal frequency-dependent abnormalities in retinitis pigmentosa. Clinical Neurophysiology 110, 15541562.CrossRefGoogle ScholarPubMed
Hood, D.C. & Birch, D.G. (1996). Abnormalities of the retinal cone system in retinitis pigmentosa. Vision Research 36, 16991709.CrossRefGoogle ScholarPubMed
Kondo, M., Khan, N.W., Bush, R.A. & Sieving, P.A. (2000). Monkey photopic sinewave ERG: Amplitude dip at 10-12 Hz from phase cancellation of post-synaptic on- and off-components. Investigative Ophthalmology & Visual Science 41, 244.Google Scholar
Kondo, M. & Sieving, P.A. (2001). Primate photopic sine-wave flicker ERG: Vector modeling analysis of component origins using glutamate analogs. Investigative Ophthalmology & Visual Science 42, 305312.Google ScholarPubMed
Levett, J. (1971). The retinal response to sinusoidal variations in light intensity at very low frequency. Investigative Ophthalmology 10, 971978.Google ScholarPubMed
Miller, R.F. & Dowling, J.E. (1970). Intracellular responses of the Muller (glial) cells of the mudpuppy retina: Their relation to b-wave of the electroretinogram. Journal of Neurophysiology 33, 323341.CrossRefGoogle ScholarPubMed
Odom, J.V., Reits, D., Burgers, N. & Riemslag, F.C. (1992). Flicker electroretinograms: A systems analytic approach. Optometry and Vision Science 69, 106116.CrossRefGoogle ScholarPubMed
Porciatti, V., Moretti, G., Ciavarella, P. & Falsini, B. (1993). The second harmonic of the electroretinogram to sinusoidal flicker: Spatiotemporal properties and clinical application. Documenta Ophthalmologica 84, 3946.CrossRefGoogle ScholarPubMed
Robson, J.G. & Frishman, L.J. (1995). Response linearity and kinetics of the cat retina: The bipolar cell component of the dark-adapted electroretinogram. Visual Neuroscience 12, 837850.CrossRefGoogle ScholarPubMed
Sieving, P.A., Frishman, L.J. & Steinberg, R.H. (1986). M-wave of proximal retina in cat. Journal of Neurophysiology 56, 10391048.CrossRefGoogle ScholarPubMed
Sieving, P.A. & Steinberg, R.H. (1985). Contribution from proximal retina to intraretinal pattern ERG: The M-wave. Investigative Ophalmology & Visual Science 26, 16421647.Google ScholarPubMed
Troelstra, A. & Garcia, C.A. (1975). The electrical response of the human eye to sinusoidal light stimulation. IEEE Transactions on Biomedical Engineering 22, 369378.CrossRefGoogle ScholarPubMed
Viswanathan, S., Frishman, L.J. & Robson, J.G. (2002). Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques. Documenta Ophthalmologica 105, 223242.CrossRefGoogle Scholar
Viswanathan, S., Frishman, L.J., Robson, J.G. & Walters, J.W. (2001). The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Investigative Ophthalmology & Visual Science 42, 514522.Google ScholarPubMed