Skip to main content Accessibility help
×
×
Home

Neurotransmitter organization of the nucleus of Edinger–Westphal and its projection to the avian ciliary ganglion

  • Anton Reiner (a1), Jonathan T. Erichsen (a2), John B. Cabot (a2), Craig Evinger (a2), Malinda E. C. Fitzerald (a1) and Harvey J. Karten (a3)...

Abstract

Two morphologically distinct types of preganglionic endings are observed in the avian ciliary ganglion: boutonal and cap-like. Boutonal endings synapse on ciliary ganglion neurons (called choroidal neurons) innervating choroidal blood vessels, while cap-like endings synapse on ciliary ganglion neurons (called ciliary neurons) controlling the lens and pupil. Some of both types of preganglionic endings contain the neuropeptides substance P (SP) and/or leucine-enkephalin (LENK). Although both types of preganglionic terminals are also known to be cholinergic, there has been no direct evidence that SP and LENK are found in cholinergic endings in the ciliary ganglion. The present studies in pigeons, which involved the use of single- and double-label immunohistochemical techniques, were undertaken to examine this issue, as well as to (1) determine the relative percentages of the boutonal and cap-like endings that contain SP, LENK, or both SP and LENK; and (2) determine if the two different types of terminals in the ciliary ganglion arise from different subdivisions of the nucleus of Edinger-Westphal (EW).

Single- and double-label immunohistochemical studies revealed that all neurons of EW, regardless of whether they contained immunohistochemically detectible amounts of SP or LENK, are cholinergic. In the medial subdivision of EW (EWM), which was found to contain approximately 700 neurons, 20.2% of these neurons were observed to contain both SP and LENK, while 11.6% were observed to contain SP only and 10.7% were observed to contain LENK only. In contrast, in lateral EW (EWL), which was found to contain approximately 500 neurons, 16.2% of the neurons were observed to contain both SP and LENK, while 19.2% of the neurons were observed to contain SP only and 12.6% were observed to contain LENK only. Retrograde-labeling studies involving horseradish peroxidase injections into the ciliary ganglion revealed that EW was the sole source of input to the ciliary ganglion and all, or nearly all, neurons in EW innervate the ciliary ganglion.

Immunohistochemical labeling of the ciliary ganglion neurons with an antiserum against choline acetyltransferase revealed that approximately 900 choroidal neurons and approximately 600 ciliary neurons are present in the ganglion, all of which receive cholinergic preganglionic endings. Of the choroidal neurons, 94% receive butonal terminals containing both SP and LENK, while only 2% receive SP+ only boutonal endings and 2% receive LENK+ only butonal endings. Of the ciliary neurons, 25% receive cap-like endings containing both SP and LENK, 30% receive cap-like endings containing only SP and 3% receive cap-like endings containing only LENK. Total unilateral lesions of EW resulted in the loss of all SP+ or LENK+ terminals in the ipsilateral ganglion. Subtotal EW lesions that spared either part of EWM or part of EWL revealed that boutonal endings arise from EWM neurons and cap-like endings from EWL neurons.

The present results suggest that the choroidal neurons, which regulate choroidal blood flow, may be relatively uniform in their functional properties since they nearly all receive boutonal endings from EWM that co-contain SP, LENK, and acetylcholine. In contrast, the ciliary neurons, which receive their preganglionic input from EWL, may consist of at least three major functionally distinct subgroups: (1) those receiving SP/LENK/acetylcholine-containing cap-like endings; (2) those receiving SP/acetylcholine-containing cap-like endings; and (3) those receiving acetylcholine-containing cap-like endings. The functional diversity of ciliary neurons may in part be related to the fact that some ciliary neurons innervate the iris and others the ciliary body.

Copyright

References

Hide All
Abercrombie, M. (1946). Estimation of nuclear population from microtome sections. Anatomical Record 94, 239247.
Akert, K., Glickman, M.A., Lang, W., Grob, P. ' Huber, A. (1980). The Edinger–Westphal nucleus in the monkey. A retrograde tracer study. Brain Research 184, 491498.
Anderson, K.D. ' Reiner, A. (1990 a). The extensive co-occurrence of substance P and dynorphin in striatal projection neurous: an evolutionarily conserved feature of basal gangila organization. Journal of Comparative Neurology 295, 339369.
Anderson, K.D. ' Reiner, A. (1990 b). The distribution and relative abundance of neurons in the pigeon forebrain containing somatostatin, neuropeptide Y, or both. Journal of Comparative Neurology 299, 261282.
Ariens-Kappers, C.U., Huber, G.C. ' Crosby, E.C. (1936). The Comparative Anatomy of the Nervous System of Vertebrates, including Man. New York: McMillan Co.
Armstrong, E. (1982). A look at relative brain size in mammals. Neuroscience Letters 34, 101104.
Bloch, B., Baird, A., Ling, N., Benoit, R. ' Guillemin, R. (1983). Immunohistochemical evidence that brain enkephalins arise from a precursor similar to adrenal preproenkephalin. Brain Research 263, 251257.
Boyd, R.T., Jacob, M.H., Couturier, S., Ballivet, M. ' Berg, D.K. (1988). Expression and regulation of neuronal acetylcholine receptor mRNA in chick ciliary ganglia. Neuron 1, 495502.
Brecha, N.C. ' Karten, H.J. (1981). Organization of the avian accessory optic system. Annals of the New York Academy of Sciences 374, 215229.
Burde, R.M. ' Loewy, A.D. (1980). Central origin of oculomotor parasympathetic neurons in the monkey. Brain Research 198, 434439.
Cabot, J.B., Reiner, A. ' Bogan, N. (1982). Avian bulbospinal pathways: anterograde and retrograde studies of cells of origin, funicular trajectories, and laminar terminations. In Progress in Brain Research, ed. Kuypers, H.G.J.M. ' Martin, G.F. pp. 79108New York: Elsevier
Cantino, D. ' Mugnaini, E. (1974). Adrenergic innervation of the parasympathetic ciliary ganglion in the chick. Science 185, 279280.
Carpenter, M.B. ' Sutin, J. (1983). Human Neuroanatomy, 8th edition. Baltimore, Maryland: Williams and Wilkins.
Chiappinelli, V.A., Feng, C. ' McMahon, L. (1989). Presynaptic responses to opioid peptides and substance P in the avian ciliary ganglion. Investigative Ophthalmology and Visual Science (Suppl) 30, 125.
Clarke, R.J., Coimbra, C.J.P. ' Alessio, M.L. (1985). Distribution of parasympathetic motorneurones in the oculomotor complex innervating the cliary ganglion in the marmoset (Callithrix jacchus). Acta Anatomica 121, 5358.
Cowan, W.M. ' Wenger, E. (1968). Degenration in the nucleus of origin of the preganglionic fibers to the chick ciliary ganglion following early removal of the optic vesicle. Journal of Experimental zoology 168, 105124.
Cuello, A.C., Galfre, G. ' Milstein, C. (1979). Detection of substance P in the central nervous system by a monoclonal antibody. Proceedings of the National Academy of Sciences of the U.S.A. 76, 35323536.
Cuello, A.C., Milstein, C., Coutre, R., Wright, B., Priestley, J.V. ' Jarvis, J., (1984). Characterization and immunocytochemical application of monoclonal antibodies against enkephalins. Journal of Histochemistry and Cytochemistry 32, 947957.
Davis, R., Koelle, G.B. ' Sanville, U.J. (1984). Electron-microscopic localization of acetylcholinesterase and butyrylcholinesterase in the ciliary ganglion of the cat. Journal of Histochemistry and Cytochemistry 32, 849861.
Dryer, S.E. ' Chiappinelli, V.A. (1983). Kappa-bungarotoxin: an intracellular study demonstrating blockade of neuronal nicotinic receptors by a snake neurotoxin. Brain Research 289, 317321.
Dryer, S.E. ' Chiappinelli, V.A. (1985 a). Substance P depolarizes nerve terminals in an autonomic ganglion. Brain Research 336, 190194.
Dryer, S.E. ' Chiappinelli, V.A. (1985 b). Properties of choroid and ciliary neurons in the avain ganglion and evidence for substance P as a neurostramitter. Journal of Neuroscience 5, 26542661.
Dryer, S.E. ' Chiappinelli, V.A. (1985 c). Electrophysiological evidence for substance P as a neurotransmitter in the ciliary ganglion. Society for Neuroscience Abstracts 11, 707.
Dryer, S.E. ' Chiappinelli, V.A. (1985 d). An intracellular study of synaptic transmission and dendritic morphology in sympathetic neurons of the chick embryo. Developmental Brain Research 22, 99111.
Erichsen, J.T. ' Evinger, C. (1985). Transsynaptic retrograde studies of the nucleus of Edinger–Westphal and the oculomotor system. Society for Neuroscience Abstracts 11, 1040.
Erichsen, J.T. ' Evinger, C. (1989). A unique subpopulation of medial rectus motorneurons and its relationship with the nucleus of Edinger-Westphal. Society for Neuroscience Abstracts 15, 240.
Erichsen, J.T.Karten, H.J., Eldred, W.D. ' Brecha, N.C. (1982 a). Localization of substance P-like abd enkephalin-like immunoreactivity within preganglionic terminals of the avian ciliary ganglion: light and electron microscopy. Journal of Neuroscience 2, 9941003
Erichsen, J.T., Reiner, A. ' Karten, H.J. (1982 b). The co-occurrence of substance P-like and leucine-enkephalin-like immunoreactives in neurons and fibers of the avian nervous system. Nature (London) 295, 407410.
Erichsen, J.T., Keyser, K.T., Zukin, R.S. ' Karten, H.J. (1984). Optiate receptors: characterization in the avian ciliary ganglion. Society for Neuroscience Abstracts 10, 989.
Evinger, C. (1988). Extraocular motor nuclei: location, morphology, and afferents. in Neuroanatomy of the Oculomotor System, ed. Buttner-Ennever, J.A. pp. 81117. New York: Elsevier Science Publishers.
Fitzgerald, M.E.C., Vana, B.A. ' Reiner, A. (1990 a). Evidence for retinal pathology following interruption of neural regulation of choroidal blood flow: Möller cells express GFAP following lesions of the nucleus of Edinger-Westphal in pigeons. Current Eye Research 9(6), 583598.
Fitzgerald, M.E.C., Vana, B.A. ' Reiner, A. (1990 b). Control of choroidal blood flow by the nucleus of Edinger-Westphal: a laster-Doppler study. Investigative Ophthamology and Visual Science 31, 24832492.
Gallagher, J.P., Griffith, W.H., ' Schinnick-Gallagher, P. (1982). Cholinergic transmission in cat parasympathetic ganglia. Journal of Physiology (London) 332, 473486.
Gamlin, P.D.R., Reiner, A., Erichsen, J.T., Cohen, D.H. ' Karten, J.J. (1984). The neural substrate for the pupillary light reflex in pigeons. Journal of Comparative Neurology 226, 523543.
Gamlin, P.D.R., Reiner, A., Karten, H.J. (1982). Substance P-containing neurons of the avian suprachiasmatic nucleus project directly to the nucleus of Edinger-Westphal. Proceedings of the National Academy of Sciences of the U.S.A. 79, 38913895.
Gherezghiher, T., Hey, J. ' Koss, M. (1989). Cholinergic control of intraocular pressure. Investigative Ophthalmology and Visual Science (Suppl.) 30, 20.
Grimes, P.A., McGlinn, A. ' Stone, R.A. (1990). Neuropeptide localization in cat ciliary ganglion. Investigative Ophthalmology and Visual Sciences (Suppl.) 31, 40.
Hara, H., Kobayashi, S., Sugita, k. ' Tsukahara, S. (1982). Innervation of dog ciliary ganglion. Histochemistry 76, 295301.
Hess, A. (1965). Developmental changes in the structure of the synapse on the myelinated cell bodies of the chicken ciliary ganglion. Journal of Cell Biology 25, 119.
Itoh, K., Konishi, A., Nomura, S., Mizuno, N., Nakamura, Y. ' Sugimoto, T. (1979). Application of coupled oxidation reaction to electron-microscopic demonstration of horseradish peroxidase: cobalt-glucose oxidase method. Brain Research 175, 341346.
Jampel, R.S. (1960). Convergence, divergence, pupillary reactions, and accomodation of the eyes from Faradic stimulation of the macaque brain. Journal of Comparative Neurology 115, 371400.
Jampel, R.S. ' Mindel, J. (1967). The nucleus for accommodation in the midbrain of the macaque. Investigative Ophthalmology 6, 4050.
Johnson, D.C. ' Epstein, M.L. (1986). Monoclonal antibodies and polyvalent antiserum to chicken choline acetyltransferase. Journal of Neurochemistry 46, 968976.
Karten, H.J. ' Hodos, W. (1967). A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia) Baltimore, Maryland: The Johns Hopkins Press.
katayama, Y. ' Nishi, S., (1984). Sites and mechanisms of actions of enkephalin in the feline parasympathetic ganglion. Journal of Physiology (London) 351, 111121.
Khachaturian, H., Lewis, M.E., ' Watson, S.J. (1983). Co-localization of proenkephalin peptides in rat brain regions. Brain Research 279, 369373.
Kondo, H., Katayama, Y. ' Yui, R. (1982). On the occurance and physiological effect of somatostalin in the ciliary ganglion of cats. Brain Research 247, 141144.
Landmesser, L. ' Pilar, G. (1970). Selective reinnervation of two cell populations in the adult pigeon ciliary ganglion. Journal of Physiology (London) 211, 203216.
Landmesser, L. ' Pilar, G. (1974). Synapse formation during embryogenesis on ganglion cells lacking a periphery. Journal of Physiology (London) 241, 715736.
Landmesser, L. ' Pilar, G., (1978). Interactions between neurons and their targets during in vivo synaptogenesis. Federation Proceedings 37, 20162022.
Lindberg, I. (1986). On the evolution of proenkaphalin. Trends in Pharmacological Science 7, 216217.
Loewy, A.D., Saper, C.B. ' Yamodis, N.D., (1978). Re-evaluation of the efferent projections of the Edinger-Westphal nucleus. Brain Research 141, 153159.
Loring, R.H. ' Zigmond, R.E. (1987). Ultrastructural distribution of [125]-toxin bindings sites on chick ciliary neurons: synaptic localization of a toxin that blocks ganglionic nicotinic receptors. Journal of Neuroscience 7, 21522162.
Lyman, D. ' Mugnaini, E. (1980). The avian accessory oculomotor nucleus. Society for Neuroscience Abstracts 6, 479.
Margiotta, J.F. ' Berg, D.K. (1986). Enkephalin and substance P modulate synaptic properties of chick ciliary ganglion neurons in cell culture. Neuroscience 18, 175182.
Margioptta, J.F., Berg, D.K. ' Dionne, V.E. (1987). The properties and regulation of funtional acetylcholine receptors on chick ciliary ganglion neurons. Journal of Neuroscience 7, 36123622.
Marwitt, R., Pilar, G. ' Weakly, J.N. (1971). Characterization of two ganglion cell populations in avaian ciliary ganglion. Brain Research 25, 317334.
McLean, I.W. ' Nakane, P.K. (1974). Periodate-Iysine-paraformaldehyde fixative: a new fixative for immunoelectron microscopy. Journal of Histochemistry and Cytochemistry 22, 10771083.
Mesulam, M.-M. (1978). Tetramethylbenzidine for horseradish peroxidase neurochemistry: a noncarcinogenic blue reaction product with superior sensitivity for visualizing afferents and efferents. Journal of Histochemistry and Cytochemistry 26, 106117.
Millar, T.J., Ishimoto, I.Epstein, M.L., Johnson, C.D. ' Morgan, I.G. (1987). Cholinergic amacrine cells of the chicken retina: a light and electron-microscope immunocytochemical study. Neuroscience 21, 725743.
Narayanan, C.H. ' Narayanan, Y. (1976). An experimental inquiry into the central source of preganglionic fibers to the chick ciliary ganglion. Journal of Comparative Neurology 166, 101109.
Philippe, E. ' Tremblay, J.P. (1981). In Vivo stimulation of a cholinergic synapse of the chick ciliary ganglion induces a reduction in the number of dense core vesicles. Neuroscience Letters, 24, 307312.
Philippe, E. ' Tremblay, J.P. (1983). Increased number pre-area of peptidergic and cholinergic vesicles in synapses of the chick ciliary ganglion following 10 Hz in vivo stimulation. Neuroscience Letters, 35, 149154.
Pilar, G., Landmesser, L. ' Burstein, L. (1980). Competition for survival among developing ciliary ganglion cells. Journal of Neurophysiology 43, 233254.
Pilar, G.Tuttle, J.B. (1982). A simple neuronal system with range of uses: the avian ciliary ganglion. In Progress in Cholinergic Biology: Model Cholinergic Synapses ed. Goldberg, A. ' Hanin, I. pp. 213247. New York: Raven Press.
Pilar, G. ' Vaughn, P.C. (1969). Electrophysiological investigations of the pigenon iris neuromusculer junctions. Comparative Biochemistry and Physiology 29, 5172.
Reiner, A. (1986). The co-occurrence of substance P-like immunore-activity and dynorphin-like immuoreactivity in striatopallidal and straitonigral projection neurons in birds and reptiles. Brain Research 371, 155161.
Reiner, A. (1987 a). A VIP-like peptide co-occurs with substance P and enkephalin in cholinergic preganglionic terminals of the avian ciliary ganglion. Neuroscience Letters 78, 2228.
Reiner, A. (1987 b). The distribution of proenkephalin-derived peptides in the central nervous system of turtle. Journal of Comparative Neurology 259, 6591.
Reiner, A. (1987 c). The presence of substance P/CGRP-containing fibers, VIP-containing fibers and numerous cholinergic fibers on blood vessels of the avian choroid. Investigative Ophthalmology and Visual Science (Suppl.) 28, 81.
Reiner, A. ' Carraway, R.C. (1987). Immunohistochemical and biochemical studies on Lys8-Asn9-Neurotensin 8–13 (LANT6)- related pepties in the basal ganglia of pigeons, turtles and hamster. Journal of Comparative Neurology 257, 453476.
Reiner, A., Davis, B.M.Brecha, N.C. ' Karten, H.J. (1984). The distribution of enkephalin-like immunoreactivity in the telencephalon of the adult and developing domestic chicken. Journal of Comparative Neurology 228, 245262.
Reiner, A., Eldred, W.D., Beinfeld, M.C. ' Krause, J.E. (1985). The co-occurance of a substance P-like peptide and cholecystokinin-8 in a fiber system of turtle contex. Journal of Neuroscience 5, 15221526
Reiner, A., Fitzgerald, M.E.C. ' Gamlin, P.D.R. (1990). Central neural circuits controlling choroidal blood flow: a laser-Doppler study. Investigative Ophthalmology and Visual Science (Suppl.) 31, 38.
Reiner, A., Karten, H.J., Gamlin, P.D.R. ' Erichsen, J.T. (1983 a). Parasympathetic control of ocular function: functional subdivisions and connections of the avian nucleus of Edinger-Westphal. Trends in Neuroscience 6, 140145.
Reiner, A., Karten, H.J. ' Solina, A.R. (1983 b). Substance P: localization within paleostriatal-tegmental pathways in pigeons. Neuroscience 9, 6185.
Role, L.W. (1984). Substance of P modulation of acetylcholine-induced currents in embryonic chicken sympathetic and ciliary ganglion neurons. Proceedings of the National Academy of Sciences of the U.S.A. 81, 29242928.
Smith, M.A., Stollberg, J., Lindstrom, J.M. ' Berg, D.K. (1985). Characterization of a component in chick ciliary ganglia that crossreacts with monoclonal antibodies to muscle and electric organ acetylcholine receptor. Journal of Neurosciences 5, 27262731.
Sorenson, E.M., Parkinson, D., Dahl, J.L. ' Chiappinelli, V.A. (1989). Immunohistochemical localization of choline acetyltransferase in the chicken mesencephalon. Journal of Comparative Neurology 281, 641657.
Stjernschantz, J., Alm, A. ' Bill, A. (1976). Effects of intracranial oculomotor nerve stimulation on ocular blood flow in rabbits: modification by indomenthacin. Experimental Eye research 23, 461469.
Stjernschantz, J. ' Bill, A. (1979). Effect of intracranial stimulation of the oculomotor nerve on ocular blood flow in the monkey, cat, and rabbit. Investigative Ophthalmology and Visual Science 18, 99103.
Terzuolo, C.A. (1951). Richerche sul ganglio ciliare degli Uccelli. Connessioni e mutamenti in relazione all's eta' e dopo recisione delle fibre pergangliari. Zum Zellforschung und Mikroskopische Anatomie 36, 255267.
Toyoshima, K., Kawana, E. ' Sakai, H. (1980). On the neuronal origin of the afferents to the ciliary ganglion in the cat. Brain Research, 6776.
Tremblay, J.P. ' Philippe, E. (1981). Morphological changes in presynaptic terminals of the chick ciliary ganglion after stimulation in vivo. A sterological study showing a net loss of total membrane. Experimental Brain Research 43, 439446.
Wessendorf, M. ' Elde, R.P. (1985). Characterization of an immuno-fluorescence technique for the demonstration of co-existing neurotransmitters within nerve fibers and terminals. Journal of Histochemistry and Cytochemistry 33, 984994.
White, J.D., Krause, J.E., Karten, H.J., ' McKelvy, J.F. (1985). Presence and ontogeny of enkephalin and substance P in the chick ciliary ganglion. Journal of Neurochemistry 45, 13191322.
Wikler, K.C., Perez, G. ' Finlay, B.L. (1989). Duration of retinogenesis: its relationship to retinal organization in two cricetine rodents. Journal of Comparative Neurology 285, 157176.
Williams, R.C. ' Dockray, G.J. (1982). Differential distribution of Met-enkephalin and Met-enkephalin-Arg6-Phe7-like peptides revealed by immunohistochemistry. Brain Research 240, 167170.
Williams, R.G.. ' Dockray, G.J. (1983). Distribution of enkephalin-related peptides in rat brain: immunohistochemical studies using antisera to met-enkephalin and met-enkephalin Arg6Phe7. Neuroscience 9, 563586.
Yoshida, K. (1953). Comparative anatomical and experimental studies on the oculomotor nucleus and neighboring nuclei. Acta Medica et Biologica 1, 143161.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed