Skip to main content Accessibility help
×
Home

Melanopsin expression in the cornea

  • ANTON DELWIG (a1), SHAWNTA Y. CHANEY (a1), ANDREA S. BERTKE (a2), JAN VERWEIJ (a1), SUSANA QUIRCE (a3), DELAINE D. LARSEN (a1), CINDY YANG (a4), ETHAN BUHR (a5), RUSSELL VAN GELDER (a5), JUANA GALLAR (a3), TODD MARGOLIS (a1) (a2) and DAVID R. COPENHAGEN (a1) (a6)...

Abstract

A unique class of intrinsically photosensitive retinal ganglion cells in mammalian retinae has been recently discovered and characterized. These neurons can generate visual signals in the absence of inputs from rods and cones, the conventional photoreceptors in the visual system. These light sensitive ganglion cells (mRGCs) express the non-rod, non-cone photopigment melanopsin and play well documented roles in modulating pupil responses to light, photoentrainment of circadian rhythms, mood, sleep and other adaptive light functions. While most research efforts in mammals have focused on mRGCs in retina, recent studies reveal that melanopsin is expressed in non-retinal tissues. For example, light-evoked melanopsin activation in extra retinal tissue regulates pupil constriction in the iris and vasodilation in the vasculature of the heart and tail. As another example of nonretinal melanopsin expression we report here the previously unrecognized localization of this photopigment in nerve fibers within the cornea. Surprisingly, we were unable to detect light responses in the melanopsin-expressing corneal fibers in spite of our histological evidence based on genetically driven markers and antibody staining. We tested further for melanopsin localization in cell bodies of the trigeminal ganglia (TG), the principal nuclei of the peripheral nervous system that project sensory fibers to the cornea, and found expression of melanopsin mRNA in a subset of TG neurons. However, neither electrophysiological recordings nor calcium imaging revealed any light responsiveness in the melanopsin positive TG neurons. Given that we found no light-evoked activation of melanopsin-expressing fibers in cornea or in cell bodies in the TG, we propose that melanopsin protein might serve other sensory functions in the cornea. One justification for this idea is that melanopsin expressed in Drosophila photoreceptors can serve as a temperature sensor.

Copyright

Corresponding author

*Address correspondence to: David R. Copenhagen, Departments of Ophthalmology and Physiology, School of Medicine, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158-0444. E-mail: cope@phy.ucsf.edu

Footnotes

Hide All

Present address: SiteOne Therapeutics, San Francisco, CA.

Present address: Department of Population Health Sciences, Virginia–Maryland College of Veterinary Medicine, Blacksburg, VA.

§

Present address: Department of Neurobiology, UCLA.

**

Present address: Department of Ophthalmology, Washington University School of Medicine, Saint Louis, MO.

Footnotes

References

Hide All
Berson, D.M., Castrucci, A.M. & Provencio, I. (2010). Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. Journal of Comparative Neurology 518, 24052422.
Bertke, A.S., Swanson, S.M., Chen, J., Imai, Y., Kinchington, P.R. & Margolis, T.P. (2011). A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro . Journal of Virology 85, 66696677.
Brock, J.A., McLachlan, E.M. & Belmonte, C. (1998). Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in Guinea-pig cornea. Journal of Physiology 512, 211217.
Delwig, A., Larsen, D.D., Yasumura, D., Yang, C.F., Shah, N.M. & Copenhagen, D.R. (2016). Retinofugal projections from melanopsin-expressing retinal ganglion cells revealed by intraocular injections of cre-dependent virus. PLos One 11, e0149501.
Digre, K.B. & Brennan, K.C. (2012). Shedding light on photophobia. Journal of Neuro-Ophthalmology 32, 6881.
Do, M.T.H. & Yau, K.W. (2010). Intrinsically photosensitive retinal ganglion cells. Physiological Reviews 90, 15471581.
Dolgonos, S., Ayyala, H. & Evinger, C. (2011). Light-induced trigeminal sensitization without central visual pathways: Another mechanism for photophobia. Investigative Ophthalmology & Visual Science 52, 78527858.
Duane, T.D., Tasman, W. & Jaeger, E.A. (2013). Duane’s Ophthalmology. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins.
Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S-K., LeGates, T., Renna, J.M., Prusky, G.T., Berson, D.M. & Hattar, S. (2010). Melanopsin-expressing retinal ganglion-cell photoreceptors: Cellular diversity and role in pattern vision. Neuron 67, 4960.
González-González, O., Bech, F., Gallar, J., Merayo-Lloves, J. & Belmonte, C. (2017). Functional properties of sensory nerve terminals of the mouse cornea. Investigative Ophthalmology & Visual Science 58, 404415.
Hartwick, A.T., Bramley, J.R., Yu, J., Stevens, K.T., Allen, C.N., Baldridge, W.H., Sollars, P.J., Pickard, G.E. (2007). Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. Journal of Neuroscience 27, 1346813480.
Hanus, C. & Schuman, E.M. (2013). Proteostasis in complex dendrites. Nature Reviews Neuroscience 14, 638648.
Jackson, A.P., Timmerman, M.P., Bagshaw, C.R. & Ashley, C.C. (1987). The kinetics of calcium binding to fura-2 and indo-1. FEBS Letters 216, 3539.
Jo, A.O., Ryskamp, D.A., Phuong, T.T., Verkman, A.S., Yarishkin, O., MacAulay, N. & Križaj, D. (2015). TRPV4 and AQP4 channels synergistically regulate cell volume and calcium homeostasis in retinal Müller glia. Journal of Neuroscience 35, 1352513537.
Kovács, I., Luna, C., Quirce, S., Mizerska, K., Callejo, G., Riestra, A., Fernández-Sánchez, L., Meseguer, V.M., Cuenca, N., Merayo-Lloves, J., Acosta, M.C., Gasull, X., Belmonte, C. & Gallar, J. (2016). Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease. Pain 157, 399417.
Kozma-Bognar, L., Hajdu, A. & Nagy, F. (2012). Light-regulated gene expression in yeast. Methods in Molecular Biology 813, 187193.
Krizaj, D. & Copenhagen, D.R. (1998). Compartmentalization of calcium extrusion mechanisms in the outer and inner segments of photoreceptors. Neuron 21, 249256.
Liu, X. & Zhong, S. (2017). Interplay between light and plant hormones in the control of arabidopsis seedling chlorophyll biosynthesis. Frontiers of Plant Science 8, 1433.
Lucas, R.J. (2013). Mammalian inner retinal photoreception. Cell Biology 23, R125R133.
Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L., Palmiter, R.D., Hawrylycz, M.J., Jones, A.R., Lein, E.S. & Zeng, H. (2010). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neuroscience 13, 133140.
Matynia, A., Nguyen, E., Sun, X., Blixt, F.W., Parikh, S., Kessler, J., de Sevilla Muller, L.P., Habib, S., Kim, P., Wang, Z.Z., Rodriquez, A., Charles, A., Nuseinowitz, S., Edvinnson, L., Barnes, S., Brecha, N.C. & Gorin, M.B. (2016). Peripheral sensory neurons expressing melanopsin respond to light. Frontiers in Neural Circuits 10, 60.
Ohara, P.T., Chin, M.S. & LaVail, J.H. (2000). The spread of herpes simplex virus type 1 from trigeminal neurons to the murine cornea: An immunoelectron microscopy study. Journal of Virology 74, 47764786.
Panda, S., Provencio, I., Tu, D.C., Pires, S.S., Rollag, M.D., Castrucci, A.M., Pletcher, M.T., Sato, T.K., Wiltshire, T., Andahazy, M., Kay, S.A., Van Gelder, R.N. & Hogenesch, J.B. (2003). Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525527.
Parra, A., Madrid, R., Echevarria, D., del Olmo, S., Morenilla-Palao, C., Acosta, M.C., Gallar, J., Dhaka, A., Viana, F. & Belmonte, C. (2010). Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nature Medicine 16, 13961399.
Regard, J.B., Sato, I.T. & Coughlin, S.R. (2008). Anatomical profiling of G-protein-coupled receptor expression. Cell 135, 561571.
Rosenthal, P., Baran, I. & Jacobs, D.S. (2009). Corneal pain without stain: Is it real? Ocular Surface 7, 2840.
Schmidt, T.M., Taniguchi, K. & Kofuji, P. (2008). Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. Journal of Neurophysiology 100, 371384.
Sexton, T.J., Bleckert, A., Turner, M.H. & Van Gelder, R.N. (2015). Type I intrinsically photosensitive retinal ganglion cells of early post-natal development correspond to the M4 subtype. Neural Development 10, 17.
Semo, M., Gias, C., Ahmado, A., Sugano, E., Allen, A.E., Lawrence, J.M., Tomita, H., Coffey, P.J. & Vugler, A.A. (2010). Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception. PloS One 5, e15009.
Shah, N.M., Pisapia, D.J., Maniatis, S., Mendelsohn, M.M., Nemes, A. & Axel, R. (2004). Visualizing sexual dimorphism in the brain. Neuron 43, 313319.
Shen, W.L., Kwon, Y., Adegbola, A.A., Luo, J., Chess, A. & Montell, C. (2011). Function of rhodopsin in temperature discrimination in Drosophila. Science 331, 13331336.
Sikka, G., Berkowitz, D.E., Hussman, G.P., Pandey, D., Cao, S., Hori, D., Park, J.T., Steppan, J., Kim, J.H., Barodka, V., Myers, A.C., Santhanam, L., Nyhan, D., Halushka, M.K., Koehler, R.C., Snyder, S.H., Shimoda, L.A. & Berkowitz, D.E. (2014). Melanopsin mediates light-dependent relaxation in blood vessels. Proceedings of the National Academy of Sciences of the United States of America 111, 1797717982.
Tu, D.C., Zhang, D., Demas, J., Slutsky, E.B., Provencio, I., Holy, T.E. & Van Gelder, R.N. (2005). Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48, 987999.
Valiente-Soriano, F.J., García-Ayuso, D., Ortín-Martínez, A., Jiménez-López, M., Galindo-Romero, C., Villegas-Pérez, M.P., Agudo-Barriuso, M., Vugler, A.A. & Vidal-Sanz, M. (2014). Distribution of melanopsin positive neurons in pigmented and albino mice: Evidence for melanopsin interneurons in the mouse retina. Frontiers in Neuroanatomy 8, 131.
Walsh, F.B. (1982). Walsh and Hoyt’s Clinical Neuro-ophthalmology (4th ed.), p. 5. Baltimore: Williams & Wilkins.
Xue, T., Do, M.T.H., Riccio, A., Jiang, Z., Hsieh, J., Wang, H.C., Merbs, S.L., Welsbie, D.S., Yoshioka, T., Weissgerber, P., Stolz, S., Flockerzi, V., Freichel, M., Simon, M.I., Clapham, D.E. & Yau, K.W. (2011). Melanopsin signalling in mammalian iris and retina. Nature 479, 6773.
Zariwala, H.A., Borghuis, B.G., Hoogland, T.M., Madisen, L., Tian, L., De Zeeuw, C.I., Zeng, H., Looger, L.L., Svoboda, K. & Chen, T.W. (2012). A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. Journal of Neuroscience 32, 31313141.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Delwig et al. supplementary material
Delwig et al. supplementary material 1

 Unknown (15.0 MB)
15.0 MB
UNKNOWN
Supplementary materials

Delwig et al. supplementary material
Delwig et al. supplementary material 2

 Unknown (8.9 MB)
8.9 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed