Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-19T00:00:55.820Z Has data issue: false hasContentIssue false

Hyperstriatum ventrale in pigeons: Effects of lesions on color-discrimination and color-reversal learning

Published online by Cambridge University Press:  02 June 2009

Lin M. Chaves
Affiliation:
Department of Psychology, The Johns Hopkins University, Baltimore
William Hodos
Affiliation:
Department of Psychology, The Johns Hopkins University, Baltimore

Abstract

Previous lesion studies of color-reversal learning in pigeons show that an impairment results when (1) the tectofugal visual pathway is damaged at either the thalamic level (nucleus rotundus) or the telencephalic level (ectostriatum), or (2) the thalamofugal visual pathway is damaged at the telencephalic level (the visual Wulst). An impairment does not result, however, when the thalamic source of thalamofugal input (n. opticus principalis thalami or OPT) to the visual Wulst is damaged. These results suggest that the visual Wulst plays a role in color-reversal learning as a consequence of visual information routed from the tectofugal pathway via other visual areas in the telencephalon. One such area is the hyperstriatum ventrale (HV). In the present study, after ablation of the medial and lateral regions of HV, pigeons were trained postoperatively to discriminate between two colors presented simultaneously. After reaching criterion, the pigeons were required to perform a series of discrimination reversals in which the positive and negative stimuli were interchanged. Lesions of medial HV resulted in impaired performance of a color-discrimination task (i.e. original learning), but did not affect discrimination reversal. An impairment in color-reversal learning resulted from combined damage to lateral HV and the fronto-thalamic tract (FT), which carries ascending visual input from OPT to the visual Wulst. No deficits were observed when either lateral HV or FT were damaged alone. These findings suggest that both the thalamofugal and tectofugal pathways provide the visual Wulst with visual input relevant to color-reversal learning.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baonoli, P. & Burkhalter, A. (1983). Organization of the afferent projections to the Wulst in the pigeon. Journal of Comparative Neurology 214, 103113.CrossRefGoogle Scholar
Bagnoli, P., Fontanesi, G. & Porciatti, V. (1990). Binocularity in the little owl, Athene noctua. I. Anatomical investigation of the thalamo-Wulst pathway. Brain, Behavior, and Evolution 35, 3139.CrossRefGoogle ScholarPubMed
Benowitz, L.I. (1980). Functional organization of the avian telencephalon. In Comparative Neurology of the Telencephalon, ed. Ebbesson, S.O.E., pp. 389421. New York: Plenum Press.CrossRefGoogle Scholar
Benowitz, L.I. & Karten, H.J. (1976). Organization of the tectofugal visual pathway in the pigeon: A retrograde transport study. Journal of Comparative Neurology 167, 503520.CrossRefGoogle Scholar
Benowitz, L.I. & Lee-Teng, E. (1973). Contrasting effects of three fore-brain ablations on discrimination learning and reversal in chicks. Journal of Comparative and Physiological Psychology 84, 391397.CrossRefGoogle ScholarPubMed
Bessette, B.B. & Hodos, W. (1989). Intensity, color, and pattern discrimination deficits after lesions of the core and belt regions of the ecto-striatum. Visual Neuroscience 2, 2734.CrossRefGoogle Scholar
Bradley, P., Horn, G. & Bateson, P.P.G. (1981). Imprinting: An electron microscopic study of chick hyperstriatum ventrale. Experimental Brain Research 41, 115120.CrossRefGoogle ScholarPubMed
Bradley, P., Davies, D.C. & Horn, G. (1985). Connections of the hyperstriatum ventrale of the domestic chick (Gallus domesticus). Journal of Anatomy 140, 577589.Google ScholarPubMed
Bravo, H. & Pettigrew, J.H. (1981). The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl, Tyto alba, and the burrowing owl, Speotyto cunicularia. Journal of Comparative Neurology 199, 419441.CrossRefGoogle Scholar
Chaves, L.M. & Hodos, W. (1997). Color reversal-learning deficits after tectofugal pathway lesions in the pigeon telencephalon. Behavorial Brain Research (in press).Google Scholar
Chaves, L.M., Hodos, W., üntürkün, O. (1993). Color-reversal learning: Effects after lesions of thalamic visual structures in pigeons. Visual Neuroscience 10, 10991107.CrossRefGoogle ScholarPubMed
Davies, D.C., Taylor, D.A. & Johnson, M.H. (1988). The effects of hyperstriatal lesions on one-trial passive-avoidance learning in the chick. Journal of Neuroscience 8, 46624666.CrossRefGoogle ScholarPubMed
DeBritto, L.R.G., Brunelli, M, Francesconi, W. & Magni, F. (1975). Visual response patterns of thalamic neurons in the pigeon. Brain Research 97, 337343.CrossRefGoogle Scholar
Delius, J.D. & Hollard, V.D. (1987). Orientation invariance of shape recognition in forebrain-lesioned pigeons. Behavioural Brain Research 23, 251259.CrossRefGoogle ScholarPubMed
Delius, J.D., Jager, R. & Friesel, M. (1984). Lateral telencephalic lesions affect visual discriminations in pigeons. Behavioural Brain Research 11, 249258.CrossRefGoogle ScholarPubMed
Ehrlich, D. & Stuchberry, J. (1986). A note on the projection from the rostral thalamus to the visual hyperstriatum of the chicken (Gallus). Experimental Brain Research 62, 207211.CrossRefGoogle Scholar
Fellows, B.J. (1967). Chance stimulus sequences for discrimination of tasks. Psychological Bulletin 67, 8792.CrossRefGoogle ScholarPubMed
Gamlin, P.D.R. & Cohen, D.H. (1986). A second ascending visual pathway from the optic tectum to the telencephalon in the pigeon (Columba livia). Journal of Comparative Neurology 250, 296310.CrossRefGoogle Scholar
Hodos, W. (1969). Color discrimination deficits after lesions of the nucleus rotundus in pigeons. Brain, Behavior, and Evolution 2, 185200.CrossRefGoogle Scholar
Hodos, W. & Bobko, P. (1984). A weighted index of bilateral brain lesions. Journal of Neuroscience Methods 12, 4347.CrossRefGoogle ScholarPubMed
Hodos, W. & Bonbright, J.C. Jr (1974). Intensity difference thresholds in pigeons after lesions of the tectofugal and thalamofugal visual pathways. Journal of Comparative and Physiological Psychology 87, 10131031.CrossRefGoogle ScholarPubMed
Hodos, W. & Karten, H.J. (1966). Brightness and pattern discrimination deficits after lesions of nucleus rotundus in the pigeon. Experimental Brain Research 2, 151167.CrossRefGoogle ScholarPubMed
Hodos, W. & Karten, H.J. (1970). Visual intensity and pattern discrimination deficits after lesions of ectostriatum in pigeons. Journal of Comparative Neurology 140, 5368.CrossRefGoogle ScholarPubMed
Hodos, W. & Karten, H.J. (1974). Visual intensity and pattern discrimination deficits in pigeons after lesions of the optic lobe. Brain, Behavior, and Evolution 9, 165194.CrossRefGoogle ScholarPubMed
Hodos, W., Karten, H.J. & Bonbright, J.C. (1973). Visual intensity and pattern discrimination after lesions of the thalamofugal pathway in pigeons. Journal of Comparative Neurology 148, 447468.CrossRefGoogle ScholarPubMed
Hodos, W., Macko, K.A. & Bessette, B.B. (1984). Near-field acuity changes after visual system lesions in pigeons. II. Telencephalon. Behavioural Brain Research 13, 1530.CrossRefGoogle ScholarPubMed
Hodos, W., Weiss, S.R.B. & Bessette, B.B. (1986). Size-threshold changes after lesions of the visual telencephalon in pigeons. Behavioural Brain Research 21, 203214.CrossRefGoogle ScholarPubMed
Hodos, W., Weiss, S.R.B. & Bessette, B.B. (1988). Intensity difference threshold after lesions of ectostriatum in pigeons. Behavioural Brain Research 30, 4353.CrossRefGoogle ScholarPubMed
Horn, G. (1981). Neural mechanisms of learning and analysis of imprinting in the domestic chick. Proceedings of the Royal Society B (London) 213, 101137.Google ScholarPubMed
Horn, G., McCabe, B.J. & Bateson, P.P.G. (1979). An autoradiographic study of the chick brain after imprinting. Brain Research 168, 361373.CrossRefGoogle ScholarPubMed
Jarvis, C.D. (1974). Visual discrimination and spatial localization deficits after lesions of the tectofugal visual pathway in pigeons. Brain, Behavior, and Evolution 9, 197232.Google ScholarPubMed
Jassik-Gerschenfeld, D., Teulon, J. & Hardy, O. (1979). Spatial interactions in the visual receptive fields of the nucleus dorsolateralis anterior of the pigeon's thalamus. Brain Research 108, 295306.CrossRefGoogle Scholar
Johnson, M.H. & Horn, G. (1987). The role of a restricted region of the chick forebrain in the recognition of individual conspecifics. Behavioural Brain Research 23, 269275.CrossRefGoogle ScholarPubMed
Karten, H.J. & Hodos, W. (1967). A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia). Baltimore, Maryland: Johns Hopkins University Press.Google Scholar
Karten, H.J. & Hodos, W. (1970). Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia). Journal of Comparative Neurology 140, 3552.CrossRefGoogle ScholarPubMed
Karten, H.J., Hodos, W., Nauta, W.J.H. & Revzin, A.M. (1973). Neural connections of the "visual Wulst" of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). Journal of Comparative Neurology 150, 253278.CrossRefGoogle ScholarPubMed
Karten, H.J. & Nauta, W.J.H. (1968). Organization of retinothalamic projections in the pigeon and owl. Anatomical Record 2, 368377.Google Scholar
Karten, H.J. & Revzin, A. (1966). The afferent connections of the nucleus rotundus in the pigeon. Brain Research 2, 368377.CrossRefGoogle ScholarPubMed
Karten, H.J. & Shimizu, T. (1991). Are visual hierarchies in the brains of the beholders? Constancy and variability in the visual system of birds and mammals. In The Changing Visual System, ed. Bagnoli, P. & Hodos, W., pp. 5159. New York: Plenum Press.CrossRefGoogle Scholar
Kertzman, C. & Hodos, W. (1988). Size-difference thresholds after lesions of thalamic visual nuclei in pigeons. Visual Neuroscience 1, 8392.CrossRefGoogle ScholarPubMed
KiTT, C.A. & Brauth, S.E. (1982). A paleostriatal-thalamic-telencephalic path in pigeons. Neuroscience 7, 27352751.CrossRefGoogle ScholarPubMed
Klüver, H. & Barrera, E. (1953). A method for the combined statining of cells and fibers in the nervous system. Journal of Neuropathology and Experimental Neurology 12, 400403.CrossRefGoogle Scholar
Macko, K.A. & Hodos, W. (1984). Near-field acuity after visual system lesions in pigeons. I. Thalamus. Behavioural Brain Research 13, 114.CrossRefGoogle ScholarPubMed
Macphail, E.M. (1971). Hyperstriatal lesions in pigeons: Effects on response inhibition, behavioral contrast, and reversal learning. Journal of Comparative and Physiological Psychology 75, 500507.CrossRefGoogle ScholarPubMed
Macphail, E.M. (1976 a). Effects of hyperstriatal lesions on within-day serial reversal performance in pigeons. Physiology and Behavior 16, 529536.CrossRefGoogle ScholarPubMed
Macphail, E.M. (1976 b). Evidence against the response-shift account of hyperstriatal function in the pigeon (Columba livia). Journal of Comparative and Physiological Psychology 90, 547559.CrossRefGoogle ScholarPubMed
Macphail, E.M., Reilly, S. & Good, M. (1993). Lateral hyperstriatal lesions disrupt simultaneous but not successive conditional discrimination learning of pigeons (Columba livia). Behavioral Neuroscience 107, 289298.CrossRefGoogle Scholar
McCabe, B.J., Cipolla-Neto, J., Horn, G. & Bateson, P.P.G. (1982). Amnesic effects of bilateral lesions placed in the hyperstriatum ventrale of the chick after imprinting. Experimental Brain Research 48, 1321.CrossRefGoogle ScholarPubMed
McCabe, B.J., Horn, G. & Bateson, P.P.G. (1981). Effects of restricted lesions of the chick forebrain on the acquisition of filial preferences during imprinting. Brain Research 205, 2937.CrossRefGoogle ScholarPubMed
Miceli, D., Gioanni, H., Repérant, J. & Peyrichoux, J. (1979). The avian visual Wulst. I: An anatomical study of afferent and efferent pathways. II: An electrophysiological study of functional properties of single neurons. In Neural Mechanisms of Behavior in the Pigeon, ed. Granda, A.M. & Maxwell, J.M., pp. 223254. New York: Plenum Press.Google Scholar
Miceli, D., Marchand, L., Repérant, J. & Rio, J.-P. (1990). Projections of the dorsolateral anterior complex and adjacent thalamic nuclei upon the visual Wulst in the pigeon. Brain Research 518, 317323.CrossRefGoogle ScholarPubMed
Miceli, D. & Repérant, J. (1985). Telencephalic afferent projections from the diencephalon and brainstem in the pigeon. A retrograde multiple-label fluorescent study. Experimental Biology 44, 71100.Google Scholar
Mulvanny, P. (1979). Discrimination of line orientation by visual nuclei. In Neural Mechanisms of Behavior in the Pigeon, ed. Granda, A.M. & Maxwell, J.M., pp. 199222. New York: Plenum Press.Google Scholar
Nixdorf, B.N. & Bischof, H.J. (1982). Afferent connections of the ectostriatum and visual wulst in the zebra finch (Taeniopygia guttata castanotis Gould): A HRP study. Brain Research 248, 917.CrossRefGoogle Scholar
Pasternak, T. & Hodos, W. (1977). Intensity difference thresholds after lesions of the visual wulst in pigeons. Journal of Comparative and Physiological Psychology 91, 485497.CrossRefGoogle ScholarPubMed
Patterson, T.A., Gilbert, D.B. & Rose, S.P.R. (1990). Pre- and post-training lesions of the intermediate medial hyperstriatum ventrale and passive avoidance learning in the chick. Experimental Brain Research 80, 189195.CrossRefGoogle ScholarPubMed
Patterson, T.A. & Rose, S.P.R. (1992). Memory in the chick: Multiple cues, distinct brain locations. Behavioral Neuroscience 106, 465470.CrossRefGoogle ScholarPubMed
Pedhazur, E.J. (1982). Multiple Regression in Behavioral Research. Explanation and Prediction, 2nd edition. New York: CBS College.Google Scholar
Pritz, M.B., Mead, W.R. & Northcutt, R.G. (1970). The effects of wulst ablations on color, brightness and pattern discrimination in pigeons. Journal of Comparative Neurology 140, 81100.CrossRefGoogle ScholarPubMed
Ritchie, T. (1979). Intratelencephalic visual connections and their relationship to the archistriatum in the pigeon (Columba livia). Doctoral Dissertation, University of Virginia.Google Scholar
Shimizu, T. & Hodos, W. (1989). Reversal learning in pigeons: Effects of selective lesions of the Wulst. Behavioral Neuroscience 103, 262272.CrossRefGoogle ScholarPubMed
Stettner, L.J. & Schultz, W.J. (1967). Brain lesions in birds: effects on discrimination acquisition and reversal. Science 155, 16891692.CrossRefGoogle ScholarPubMed
Wang, J.-C, Jiang, S. & Frost, B.J. (1993). Visual processing in pigeon nucleus rotundus: Luminance, color, motion, and looming subdivisions. Visual Neuroscience 10, 2130.CrossRefGoogle ScholarPubMed
Watanabe, M. (1987). Synaptic organization of the nucleus dorsolateralis anterior thalami in the Japanese quail (Coturnix japonica). Brain Research 401, 279291.CrossRefGoogle Scholar
Watanabe, M., Ito, H. & Ikushima, M. (1985). Cytoarchitecture and ultrastructure of the avian ectostriatum: Afferent terminals from the dorsal telencephalon and some nuclei in the thalamus. Journal of Comparative Neurology 236, 241257.CrossRefGoogle ScholarPubMed
Watanabe, M., Ito, H. & Masi, H. (1983). Cytoarchitecture and visual receptive neurons in the Wulst of the Japanese quail (Coturnix japonica). Journal of Comparative Neurology 213, 188198.CrossRefGoogle Scholar
Watanabe, S. (1991). Effects of ectostriatal lesions on natural concept, pseudoconcept, and artificial pattern discrimination in pigeons. Visual Neuroscience 6, 497506.CrossRefGoogle ScholarPubMed