Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-08T17:33:43.826Z Has data issue: false hasContentIssue false

GlyRα2, not GlyRα3, modulates the receptive field surround of OFF retinal ganglion cells

Published online by Cambridge University Press:  30 October 2015

CHI ZHANG
Affiliation:
Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky
REGINA D. NOBLES
Affiliation:
Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, Kentucky
MAUREEN A. McCALL*
Affiliation:
Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, Kentucky
*
*Address correspondence to: Maureen A. McCall, Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY 40202. E-mail: Mo.mccall@louisville.edu

Abstract

Receptive fields (RFs) of most retinal ganglion cells (RGCs) consist of an excitatory center and suppressive surround. The RF center arises from the summation of excitatory bipolar cell glutamatergic inputs, whereas the surround arises from lateral inhibitory inputs. In the retina, both gamma amino butyric acid (GABA) and glycine are inhibitory neurotransmitters. A clear role for GABAergic inhibition modulating the RGC RF surround has been demonstrated across species. Glycinergic inhibition is more commonly associated with RF center modulation, although there is some evidence that it may contribute to the RF surround. The synaptic glycinergic chloride channels are formed by three homomeric β and two homomeric α subunits that can be glycine receptor (GlyR) α1, α2, α3, or α4. GlyRα composition is responsible for currents with distinct decay kinetics. Their expression within the inner plexiform laminae and neuronal subtypes also differ. We studied the role of GlyR subunit selective modulation of RGC RF surrounds, using mice lacking GlyRα2 (Glra2−/−), GlyRα3 (Glra3−/−), or both (Glra2/3−/−). We chose this molecular genetic approach instead of pharmacological manipulation because there are no subunit selective antagonists and strychnine blocks all GlyRs. Comparisons of annulus-evoked responses among wild type (WT) and GlyRα knockouts (Glra2−/−, Glra3−/− and Glra2/3−/−) show that GlyRα2 inhibition enhances RF surround suppression and post-stimulus excitation in only WT OFF RGCs. Similarities in the responses in Glra2−/− and Glra2/3−/− RGCs verify these conclusions. Based on previous and current data, we propose that GlyRα2-mediated input uses a crossover inhibitory circuit. Further, we suggest that GlyRα2 modulates the OFF RGC RF center and surround independently. In summary, our results define a selective GlyR subunit-specific control of RF surround suppression in OFF RGCs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.R., Jones, B.W., Watt, C.B., Shaw, M.V., Yang, J.H., Demill, D., Lauritzen, J.S., Lin, Y., Rapp, K.D., Mastronarde, D., Koshevoy, P., Grimm, B., Tasdizen, T., Whitaker, R. & Marc, R.E. (2011). Exploring the retinal connectome. Molecular Vision 17, 355379.Google ScholarPubMed
Baden, T., Berens, P., Bethge, M. & Euler, T. (2013). Spikes in mammalian bipolar cells support temporal layering of the inner retina. Current Biology 23, 4852.CrossRefGoogle ScholarPubMed
Bonaventure, N. & Wioland, N. (1981). Involvement of GABA in ganglion cell receptive field organization in the frog retina. Vision Research 21, 16531655.CrossRefGoogle ScholarPubMed
Bonaventure, N., Wioland, N. & Roussel, G. (1980). Effects of some amino acids (GABA, glycine, taurine) and of their antagonists (picrotoxin, strychnine) on spatial and temporal features of frog retinal ganglion cell responses. Pflugers Archiv 385, 5164.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat's retina. The Journal of Physiology 240, 397419.CrossRefGoogle ScholarPubMed
Buldyrev, I. & Taylor, W.R. (2013). Inhibitory mechanisms that generate centre and surround properties in ON and OFF brisk-sustained ganglion cells in the rabbit retina. The Journal of Physiology 591, 303325.CrossRefGoogle Scholar
Caldwell, J.H. & Daw, N.W. (1978a). Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: Changes in centre surround receptive fields. The Journal of Physiology 276, 299310.CrossRefGoogle ScholarPubMed
Caldwell, J.H. & Daw, N.W. (1978b). New properties of rabbit retinal ganglion cells. The Journal of Physiology 276, 257276.CrossRefGoogle ScholarPubMed
Chen, X., Hsueh, H.A., Greenberg, K. & Werblin, F.S. (2010). Three forms of spatial temporal feedforward inhibition are common to different ganglion cell types in rabbit retina. Journal of Neurophysiology 103, 26182632.CrossRefGoogle ScholarPubMed
Chen, X., Hsueh, H.A. & Werblin, F.S. (2011). Amacrine-to-amacrine cell inhibition: Spatiotemporal properties of GABA and glycine pathways. Visual Neuroscience 28, 193204.CrossRefGoogle ScholarPubMed
Cleland, B.G., Dubin, M.W. & Levick, W.R. (1971). Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. The Journal of Physiology 217, 473496.CrossRefGoogle ScholarPubMed
Cleland, B.G., Levick, W.R. & Sanderson, K.J. (1973). Properties of sustained and transient ganglion cells in the cat retina. The Journal of Physiology 228, 649680.CrossRefGoogle ScholarPubMed
Cook, P.B. & McReynolds, J.S. (1998). Modulation of sustained and transient lateral inhibitory mechanisms in the mudpuppy retina during light adaptation. Journal of Neurophysiology 79, 197204.CrossRefGoogle ScholarPubMed
Daw, N.W., Jensen, R.J. & Brunken, W.J. (1990). Rod pathways in mammalian retinae. Trends in Neurosciences 13, 110115.CrossRefGoogle ScholarPubMed
Demb, J.B. & Singer, J.H. (2012). Intrinsic properties and functional circuitry of the AII amacrine cell. Visual Neuroscience 29, 5160.CrossRefGoogle ScholarPubMed
Di Marco, S.D., Protti, D.A. & Solomon, S.G. (2013). Excitatory and inhibitory contributions to receptive fields of alpha-like retinal ganglion cells in mouse. Journal of Neurophysiology 110, 14261440.CrossRefGoogle Scholar
Eggers, E.D. & Lukasiewicz, P.D. (2010). Interneuron circuits tune inhibition in retinal bipolar cells. Journal of Neurophysiology 103(1), 2537.CrossRefGoogle ScholarPubMed
Eggers, E.D., Mccall, M.A. & Lukasiewicz, P.D. (2007). Presynaptic inhibition differentially shapes transmission in distinct circuits in the mouse retina. The Journal of Physiology 582, 569582.CrossRefGoogle ScholarPubMed
Endeman, D., Fahrenfort, I., Sjoerdsma, T., Steijaert, M., Ten Eikelder, H. & Kamermans, M. (2012). Chloride currents in cones modify feedback from horizontal cells to cones in goldfish retina. The Journal of Physiology 590, 55815595.CrossRefGoogle ScholarPubMed
Enroth-Cugell, C. & Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. The Journal of Physiology 187, 517552.CrossRefGoogle ScholarPubMed
Farrow, K., Teixeira, M., Szikra, T., Viney, T.J., Balint, K., Yonehara, K. & Roska, B. (2013). Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold. Neuron 78, 325338.CrossRefGoogle ScholarPubMed
Flores-Herr, N., Protti, D.A. & Wässle, H. (2001). Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. The Journal of Neuroscience 21, 48524863.CrossRefGoogle ScholarPubMed
Greenberg, K.P., Pham, A. & Werblin, F.S. (2011). Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron 69, 713720.CrossRefGoogle ScholarPubMed
Harvey, R.J., Depner, U.B., Wässle, H., Ahmadi, S., Heindl, C., Reinold, H., Smart, T.G., Harvey, K., Schutz, B., Bo-Salem, O.M., Zimmer, A., Poisbeau, P., Welzl, H., Wolfer, D.P., Betz, H., Zeilhofer, H.U. & Muller, U. (2004). GlyR alpha3: An essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304, 884887.CrossRefGoogle ScholarPubMed
Hsueh, H.A., Molnar, A. & Werblin, F.S. (2008). Amacrine-to-amacrine cell inhibition in the rabbit retina. Journal of Neurophysiology 100, 20772088.CrossRefGoogle ScholarPubMed
Ikeda, H. & Wright, M.J. (1972). Receptive field organization of 'sustained' and 'transient' retinal ganglion cells which subserve different function roles. The Journal of Physiology 227, 769800.CrossRefGoogle ScholarPubMed
Ivanova, E., Muller, U. & Wässle, H. (2006). Characterization of the glycinergic input to bipolar cells of the mouse retina. European Journal of Neuroscience 23, 350364.CrossRefGoogle ScholarPubMed
Kirby, A.W. (1979). The effect of strychnine, bicuculline, and picrotoxin on X and Y cells in the cat retina. The Journal of General Physiology 74, 7184.CrossRefGoogle ScholarPubMed
Kirby, A.W. & Enroth-Cugell, C. (1976). The involvement of gamma-aminobutyric acid in the organization of cat retinal ganglion cell receptive fields. A study with picrotoxin and bicuculline. The Journal of General Physiology 68, 465484.CrossRefGoogle Scholar
Kuffler, S.W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16, 3768.CrossRefGoogle ScholarPubMed
Lee, S.C., Meyer, A., Schubert, T., Huser, L., Dedek, K. & Haverkamp, S. (2015). Morphology and connectivity of the small bistratified A8 amacrine cell in the mouse retina. The Journal of Comparative Neurology. 523, 15291547.CrossRefGoogle ScholarPubMed
Lukasiewicz, P.D. & Werblin, F.S. (1990). The spatial distribution of excitatory and inhibitory inputs to ganglion cell dendrites in the tiger salamander retina. The Journal of Neuroscience 10, 210221.CrossRefGoogle ScholarPubMed
Majumdar, S., Heinze, L., Haverkamp, S., Ivanova, E. & Wässle, H. (2007). Glycine receptors of A-type ganglion cells of the mouse retina. Visual Neuroscience Jul-Aug;24(4), 471–87.CrossRefGoogle ScholarPubMed
Majumdar, S., Weiss, J. & Wässle, H. (2009). Glycinergic input of widefield, displaced amacrine cells of the mouse retina. The Journal of Physiology 587, 38313849.CrossRefGoogle ScholarPubMed
Manookin, M.B., Beaudoin, D.L., Ernst, Z.R., Flagel, L.J. & Demb, J.B. (2008). Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. The Journal of Neuroscience 28, 41364150.CrossRefGoogle ScholarPubMed
Margolis, D.J., Gartland, A.J., Euler, T. & Detwiler, P.B. (2010). Dendritic calcium signaling in ON and OFF mouse retinal ganglion cells. The Journal of Neuroscience 30, 71277138.CrossRefGoogle Scholar
Michael, C.R. (1968). Receptive fields of single optic nerve fibers in a mammal with an all-cone retina. I: Contrast-sensitive units. Journal of Neurophysiology 31, 249256.CrossRefGoogle Scholar
Molnar, A., Hsueh, H.A., Roska, B. & Werblin, F.S. (2009). Crossover inhibition in the retina: Circuitry that compensates for nonlinear rectifying synaptic transmission. Journal of Computational Neuroscience 27, 569590.CrossRefGoogle ScholarPubMed
Münch, T.A., Da Silveira, R.A., Siegert, S., Viney, T.J., Awatramani, G.B. & Roska, B. (2009). Approach sensitivity in the retina processed by a multifunctional neural circuit. Nature Neuroscience 12, 13081316.CrossRefGoogle ScholarPubMed
Murphy, G.J. & Rieke, F. (2006). Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron 52, 511524.CrossRefGoogle ScholarPubMed
Nobles, R.D., Zhang, C., Muller, U., Betz, H. & Mccall, M.A. (2012). Selective glycine receptor alpha2 subunit control of crossover inhibition between the on and off retinal pathways. The Journal of Neuroscience 32, 33213332.CrossRefGoogle ScholarPubMed
O'brien, B.J., Richardson, R.C. & Berson, D.M. (2003). Inhibitory network properties shaping the light evoked responses of cat alpha retinal ganglion cells. Visual Neuroscience 20, 351361.CrossRefGoogle ScholarPubMed
Pang, J.J., Gao, F. & Wu, S.M. (2003). Light-evoked excitatory and inhibitory synaptic inputs to ON and OFF alpha ganglion cells in the mouse retina. The Journal of Neuroscience 23, 60636073.CrossRefGoogle Scholar
Pang, J.J., Gao, F. & Wu, S.M. (2007). Cross-talk between on and off channels in the salamander retina: Indirect bipolar cell inputs to on-off ganglion cells. Vision Research 47, 384392.CrossRefGoogle ScholarPubMed
Protti, D.A., Di Marco, S., Huang, J.Y., Vonhoff, C.R., Nguyen, V. & Solomon, S.G. (2014). Inner retinal inhibition shapes the receptive field of retinal ganglion cells in primate. The Journal of Physiology 592, 4965.CrossRefGoogle ScholarPubMed
Rodieck, R.W. & Stone, J. (1965). Analysis of receptive fields of cat retinal ganglion cells. Journal of Neurophysiology 28, 832849.CrossRefGoogle ScholarPubMed
Roska, B., Nemeth, E., Orzo, L. & Werblin, F.S. (2000). Three levels of lateral inhibition: A space-time study of the retina of the tiger salamander. The Journal of Neuroscience 20, 19411951.CrossRefGoogle ScholarPubMed
Russell, T.L. & Werblin, F.S. (2010). Retinal synaptic pathways underlying the response of the rabbit local edge detector. Journal of Neurophysiology 103, 27572769.CrossRefGoogle ScholarPubMed
Sagdullaev, B.T., Demarco, P.J. & Mccall, M.A. (2004). Improved contact lens electrode for corneal ERG recordings in mice. Documenta Ophthalmologica 108, 181184.CrossRefGoogle ScholarPubMed
Sagdullaev, B.T. & McCall, M.A. (2005). Stimulus size and intensity alter fundamental receptive-field properties of mouse retinal ganglion cells in vivo. Visual Neuroscience 22, 649659.CrossRefGoogle ScholarPubMed
Stone, C. & Pinto, L.H. (1992). Receptive field organization of retinal ganglion cells in the spastic mutant mouse. The Journal of Physiology 456, 125142.CrossRefGoogle ScholarPubMed
Thoreson, W.B. & Mangel, S.C. (2012). Lateral interactions in the outer retina. Progress in Retina and Eye Research 31, 407441.CrossRefGoogle ScholarPubMed
van Wyk, M., Wässle, H. & Taylor, W.R. (2009). Receptive field properties of ON- and OFF-ganglion cells in the mouse retina. Visual Neuroscience 26, 297308.CrossRefGoogle Scholar
Vroman, R. & Kamermans, M. (2015). Feedback-induced glutamate spillover enhances negative feedback from horizontal cells to cones. The Journal of Physiology 593, 29272940.CrossRefGoogle ScholarPubMed
Wang, T.M., Holzhausen, L.C. & Kramer, R.H. (2014). Imaging an optogenetic pH sensor reveals that protons mediate lateral inhibition in the retina. Nature Neuroscience 17, 262268.CrossRefGoogle ScholarPubMed
Wässle, H., Heinze, L., Ivanova, E., Majumdar, S., Weiss, J., Harvey, R.J. & Haverkamp, S. (2009). Glycinergic transmission in the Mammalian retina. Frontiers in Molecular Neuroscience 2, 6.CrossRefGoogle ScholarPubMed
Weiss, J., O'sullivan, G.A., Heinze, L., Chen, H.X., Betz, H. & Wässle, H. (2008). Glycinergic input of small-field amacrine cells in the retinas of wildtype and glycine receptor deficient mice. Molecular and Cell Neuroscience 37, 4055.CrossRefGoogle ScholarPubMed
Werblin, F. (1991). Synaptic connections, receptive fields, and patterns of activity in the tiger salamander retina. A simulation of patterns of activity formed at each cellular level from photoreceptors to ganglion cells [the Friendenwald lecture]. Investigative Ophthalmology & Visual Science 32, 459483.Google ScholarPubMed
Werblin, F.S. & Dowling, J.E. (1969). Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. Journal of Neurophysiology 32, 339355.CrossRefGoogle ScholarPubMed
Xin, D. & Bloomfield, S.A. (1999). Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina. Visual Neuroscience 16, 653665.CrossRefGoogle ScholarPubMed
Young-Pearse, T.L., Ivic, L., Kriegstein, A.R. & Cepko, C.L. (2006). Characterization of mice with targeted deletion of glycine receptor alpha 2. Molecular and Cell Neuroscience 26, 57285734.Google ScholarPubMed
Zhang, C., Rompani, S.B., Roska, B. & Mccall, M.A. (2014). Adeno-associated virus-RNAi of GlyRalpha1 and characterization of its synapse-specific inhibition in OFF alpha transient retinal ganglion cells. Journal of Neurophysiology 112, 31253137.CrossRefGoogle ScholarPubMed