Skip to main content Accessibility help
×
Home

Generation, characterization, and molecular cloning of the Noerg-1 mutation of rhodopsin in the mouse

  • LAWRENCE H. PINTO (a1), MARTHA H. VITATERNA (a1), KAZUHIRO SHIMOMURA (a1), SANDRA M. SIEPKA (a1), ERIN L. MCDEARMON (a1), DEBORAH FENNER (a1), STEPHEN L. LUMAYAG (a1), CHIAKI OMURA (a1), ANNE W. ANDREWS (a1), MATTHEW BAKER (a1), BRANDON M. INVERGO (a1), MARISSA A. OLVERA (a2), EDWARD HEFFRON (a2), ROBERT F. MULLINS (a2), VAL C. SHEFFIELD (a3) (a4), EDWIN M. STONE (a2) and JOSEPH S. TAKAHASHI (a1) (a4)...

Abstract

We performed genome-wide mutagenesis of C57BL/6J mice using the mutagen N-ethyl-N-nitrosourea (ENU) and screened the third generation (G3) offspring for visual system alterations using electroretinography and fundus photography. Several mice in one pedigree showed characteristics of retinal degeneration when tested at 12–14 weeks of age: no recordable electroretinogram (ERG), attenuation of retinal vessels, and speckled pigmentation of the fundus. Histological studies showed that the retinas undergo a photoreceptor degeneration with apoptotic loss of outer nuclear layer nuclei but visual acuity measured using the optomotor response under photopic conditions persists in spite of considerable photoreceptor loss. The Noerg-1 mutation showed an autosomal dominant pattern of inheritance in progeny. Studies in early postnatal mice showed degeneration to occur after formation of partially functional rods. The Noerg-1 mutation was mapped genetically to chromosome 6 by crossing C57BL/6J mutants with DBA/2J or BALB/cJ mice to produce an N2 generation and then determining the ERG phenotypes and the genotypes of the N2 offspring at multiple loci using SSLP and SNP markers. Fine mapping was accomplished with a set of closely spaced markers. A nonrecombinant region from 112.8 Mb to 115.1 Mb was identified, encompassing the rhodopsin (Rho) coding region. A single nucleotide transition from G to A was found in the Rho gene that is predicted to result in a substitution of Tyr for Cys at position 110, in an intradiscal loop. This mutation has been found in patients with autosomal dominant retinitis pigmentosa (RP) and results in misfolding of rhodopsin expressed in vitro. Thus, ENU mutagenesis is capable of replicating mutations that occur in human patients and is useful for generating de novo models of human inherited eye disease. Furthermore, the availability of the mouse genomic sequence and extensive DNA polymorphisms made the rapid identification of this gene possible, demonstrating that the use of ENU-induced mutations for functional gene identification is now practical for individual laboratories.

Copyright

Corresponding author

Address correspondence and reprint requests to: Lawrence H. Pinto, Northwestern University, Department of Neurobiology and Physiology, 2205 Tech Drive, Northwestern University, Evanston, IL 60208, USA. E-mail: larry-pinto@northwestern.edu

References

Hide All

REFERENCES

Blackshaw, S., Fraioli, R.E., Furukawa, T., & Cepko, C.L. (2001). Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 107, 579589.
Blanks, J.C., Adinolfi, A.M., & Lolley, R.N. (1974). Photoreceptor degeneration and synaptogenesis in retinal-degenerative (rd) mice. Journal of Comparative Neurology 156, 95106.
Brand, M., Heisenberg, C.P., Warga, R.M., Pelegri, F., Karlstrom, R.O., Beuchle, D., Picker, A., Jiang, Y.J., Furutani-Seiki, M., van Eeden, F.J., Granato, M., Haffter, P., Hammerschmidt, M., Kane, D.A., Kelsh, R.N., Mullins, M.C., Odenthal, J., & Nusslein-Volhard, C. (1996). Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development 123, 129142.
Dalke, C., Loster, J., Fuchs, H., Gailus-Durner, V., Soewarto, D., Favor, J., Neuhauser-Klaus, A., Pretsch, W., Gekeler, F., Shinoda, K., Zrenner, E., Meitinger, T., de Angelis, M.H., & Graw, J. (2004). Electroretinography as a screening method for mutations causing retinal dysfunction in mice. Investigative Ophthalmology and Visual Science 45, 601609.
Dawson, W.W., Trick, G.L., & Litzkow, C.A. (1979). Improved electrode for electroretinography. Investigative Ophthalmology and Visual Science 18, 988991.
Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T., & MacKinnon, R. (1998). The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280, 6977.
Dryja, T.P., Hahn, L.B., Cowley, G.S., McGee, T.L., & Berson, E.L. (1991). Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Proceedings of the National Academy of Sciences of the U.S.A. 88, 93709374.
Frederick, J.M., Krasnoperova, N.V., Hoffmann, K., Church-Kopish, J., Ruther, K., Howes, K., Lem, J., & Baehr, W. (2001). Mutant rhodopsin transgene expression on a null background. Investigative Ophthalmology and Visual Science 42, 826833.
Germer, S., Holland, M.J., & Higuchi, R. (2000). High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Research 10, 258266.
Hwa, J., Klein-Seetharaman, J., & Khorana, H.G. (2001). Structure and function in rhodopsin: Mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants. Proceedings of the National Academy of Sciences of the U.S.A. 98, 48724876.
Hwa, J., Reeves, P.J., Klein-Seetharaman, J., Davidson, F., & Khorana, H.G. (1999). Structure and function in rhodopsin: Further elucidation of the role of the intradiscal cysteines, Cys-110, -185, and -187, in rhodopsin folding and function. Proceedings of the National Academy of Sciences of the U.S.A. 96, 19321935.
Illing, M.E., Rajan, R.S., Bence, N.F., & Kopito, R.R. (2002). A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. Journal of Biological Chemistry 277, 3415034160.
Johnson, L.V. & Blanks, J.C. (1984). Application of acrylamide as an embedding medium in studies of lectin and antibody binding in the vertebrate retina. Current Eye Research 3, 969974.
Justice, M.J., Noveroske, J.K., Weber, J.S., Zheng, B., & Bradley, A. (1999). Mouse ENU mutagenesis. In Human Molecular Genetics 8, 19551963.
Karnik, S.S. & Khorana, H.G. (1990). Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. Journal of Biological Chemistry 265, 1752017524.
Keverne, E.B. (1997). An evaluation of what the mouse knockout experiments are telling us about mammalian behaviour. Bioessays 19, 10911098.
Kono, M., Yu, H., & Oprian, D.D. (1998). Disulfide bond exchange in rhodopsin. Biochemistry 37, 13021305.
Konopka, R.J. & Benzer, S. (1971). Clock mutants of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 68, 21122116.
McGill, T.J., Douglas, R.M., Lund, R.D., & Prusky, G.T. (2004). Quantification of spatial vision in the Royal College of Surgeons rat. Investigative Ophthalmology and Visual Science 45, 932936.
Moldin, S.O., Farmer, M.E., Chin, H.R., & Battey, J.F., Jr. (2001). Trans-NIH neuroscience initiatives on mouse phenotyping and mutagenesis. In Mammalian Genome 12, 575581.
Nishimura, D.Y., Fath, M., Mullins, R.F., Searby, C., Andrews, M., Davis, R., Andorf, J.L., Mykytyn, K., Swiderski, R.E., Yang, B., Carmi, R., Stone, E.M., & Sheffield, V.C. (2004). Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proceedings of the National Academy of Sciences of the U.S.A. 101, 1658816593.
Nusslein-Volhard, C. & Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287, 795801.
Pahl, H.L. (1999). Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiological Reviews 79, 683701.
Papazian, D.M., Schwarz, T.L., Tempel, B.L., Jan, Y.N., & Jan, L.Y. (1987). Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237, 749753.
Peachey, N.S. & Ball, S.L. (2003). Electrophysiological analysis of visual function in mutant mice. Documenta Ophthalmologica 107, 1336.
Pearn, M.T., Randall, L.L., Shortridge, R.D., Burg, M.G., & Pak, W.L. (1996). Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants. Journal of Biological Chemistry 271, 49374945.
Pinto, L.H. & Enroth-Cugell, C. (2000). Tests of the mouse visual system. Mammalian Genome 11, 531536.
Prusky, G.T., Alam, N.M., Beekman, S., & Douglas, R.M. (2004). Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Investigative Ophthalmology and Visual Science 45, 46114616.
Rajan, R.S. & Kopito, R.R. (2005). Suppression of wild-type rhodopsin maturation by mutants linked to autosomal dominant retinitis pigmentosa. Journal of Biological Chemistry 280, 12841291.
Rozen, S. & Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods of Molecular Biology 132, 365386.
Sanyal, S. & Bal, A.K. (1973). Comparative light and electron microscopic study of retinal histogenesis in normal and rd mutant mice. Zeitschrift Anatomische Entwicklungsgeschichte 142, 219238.
Siepka, S.M. & Takahashi, J.S. (2005). Forward genetic screen to identify circadian rhythm mutants in mice. Methods in Enzymology 393, 217228.
Sung, C.H., Davenport, C.M., Hennessey, J.C., Maumenee, I.H., Jacobson, S.G., Heckenlively, J.R., Nowakowski, R., Fishman, G., Gouras, P., & Nathans, J. (1991). Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proceedings of the National Academy of Sciences of the U.S.A. 88, 64816485.
Takahashi, J.S., Pinto, L.H., & Vitaterna, M.H. (1994). Forward and reverse genetic approaches to behavior in the mouse [see comments]. Science 264, 17241733.
Tempel, B.L., Papazian, D.M., Schwarz, T.L., Jan, Y.N., & Jan, L.Y. (1987). Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237, 770775.
Vaithinathan, R., Berson, E.L., & Dryja, T.P. (1994). Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. Genomics 21, 461463.
Vitaterna, M.H., Pinto, L.H., & Turek, F.W. (2005). Molecular genetic basis for mammalian circadian rhythms. In Principles and Practice of Sleep Medicine, ed. Kryger, M.H., pp. 363374. Philadelphia: Saulders.
Wu, C.-F., Ganetzky, B., Haugland, F., & Liu, A.-X. (1983). Potassium currents in drosophila: Different components affected by mutations of two genes. Science 220, 10761078.
Zhou, G., Kamahori, M., Okano, K., Chuan, G., Harada, K., & Kambara, H. (2001). Quantitative detection of single nucleotide polymorphisms for a pooled sample by a bioluminometric assay coupled with modified primer extension reactions (BAMPER). Nucleic Acids Research 29, E93.

Keywords

Generation, characterization, and molecular cloning of the Noerg-1 mutation of rhodopsin in the mouse

  • LAWRENCE H. PINTO (a1), MARTHA H. VITATERNA (a1), KAZUHIRO SHIMOMURA (a1), SANDRA M. SIEPKA (a1), ERIN L. MCDEARMON (a1), DEBORAH FENNER (a1), STEPHEN L. LUMAYAG (a1), CHIAKI OMURA (a1), ANNE W. ANDREWS (a1), MATTHEW BAKER (a1), BRANDON M. INVERGO (a1), MARISSA A. OLVERA (a2), EDWARD HEFFRON (a2), ROBERT F. MULLINS (a2), VAL C. SHEFFIELD (a3) (a4), EDWIN M. STONE (a2) and JOSEPH S. TAKAHASHI (a1) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed