Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T01:11:47.289Z Has data issue: false hasContentIssue false

Correspondence between visually evoked voltage-sensitive dye signals and synaptic activity recorded in cortical pyramidal cells with intracellular microelectrodes

Published online by Cambridge University Press:  02 June 2009

David M. Senseman
Affiliation:
Division of Life Sciences, University of Texas at San Antonio, San Antonio

Abstract

Fast, multiple-site optical recording of voltage-sensitive dye (VSD) signals and intracellular microelectrode recordings were combined to characterize visually evoked neuronal responses in the visual cortex of the pond turtle, Pseudemys scripta. By using an in vitro, eye-brain preparation stained with the merocyanine oxazolone voltage-sensitive dye, NK-2495 or a close analog, NK-2761, large VSD signals relatively free of vibrational noise could be recorded in single trials following a stroboscopic light flash to the contralateral eye. VSD signals recorded from the same cortical location in repeated trials exhibited considerable variability in the onset, duration, and amplitude of secondary depolarizations. Because of this variability, secondary depolarizations were largely absent in signal-averaged responses. Superposition of VSD signals with intracellular recordings obtained from cortical pyramidal cells revealed a close correspondence between their signal waveforms. The two signals were virtually identical in their onset, initial rate of rise, and time-to-peak. At later periods (>500 ms), the correspondence was less close, especially for large cortical depolarizations. Some of this disparity could be attributed to contamination of the VSD signal by a large intrinsic optical response. A second contribution was a failure of the VSD signal to register asynchronous regenerative effects occurring in single pyramidal cells. It is suggested that the close correspondence between the microelectrode and optical recordings in the early phase of the response may reflect the organization of pyramidal cells into clusters that receive virtually identical synaptic inputs.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arieli, A., Shoham, D., Hildesheim, R. & Grinvald, A. (1995). Coherent spatiotemporal patterns of ongoing activity revealed by realtime optical imaging with single-unit recording in cat visual cortex. Journal of Neurophysiology 73, 20722093.CrossRefGoogle ScholarPubMed
Berman, N.J., Douglas, R.J., Martin, K.A.C. & Whitteridge, D. (1991). Mechanisms of inhibition in cat visual cortex. Journal of Physiology (London) 440, 697722.CrossRefGoogle ScholarPubMed
Blasdel, G.G. (1992). Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex. Journal of Neuro-science 12, 31153138.Google ScholarPubMed
Blasdel, G., Obermayer, K. & Kiorpes, L. (1995). Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys. Visual Neuroscience 12, 589603.CrossRefGoogle ScholarPubMed
Blasdel, G.G. & Salama, G. (1986). Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature (London) 321, 579585.CrossRefGoogle ScholarPubMed
Bonhoeffer, T. & Grinvald, A. (1993). The layout of iso-orientation domains in area 18 of cat visual cortex: Optical imaging reveals pinwheel-like organization. Journal of Neuroscience 13, 41574180.CrossRefGoogle ScholarPubMed
Calef, M.T. & Ulinski, P.S. (1993). Synaptic organization of lateral pyramidal cells in the visual cortex: Geometry of pyramidal cells. Society for Neuroscience Abstracts 19, 1577.Google Scholar
Cohen, L.B. (1973). Changes in neuron structure during action potential propagation and synaptic transmission. Physiological Reviews 53, 373418.CrossRefGoogle ScholarPubMed
Cohen, L.B., Keynes, R.D. & Hille, B. (1968). Light scattering and birefringence changes during nerve activity. Nature (London) 218, 438441.CrossRefGoogle ScholarPubMed
Cohen, L.B. & Keynes, R.D. (1971). Changes in light scattering associated with the action potential in crab nerves. Journal of Physiology (London) 212, 259275.CrossRefGoogle ScholarPubMed
Cohen, L.B., Salzberg, B.M., Davila, H.V., Ross, W.N., Landowne, D., Waggoner, A.S. & Wang, C.H. (1974). Changes in axon fluorescence during activity: Molecular probes of membrane potential. Journal of Membrane Biology 19, 136.CrossRefGoogle ScholarPubMed
Connors, B.W. & Kriegstein, A.R. (1986). Cellular physiology of the turtle visual cortex: Distinctive properties of pyramidal and stellate neurons. Journal of Neuroscience 6, 164177.CrossRefGoogle ScholarPubMed
Desan, P.H. (1984). The organization of the cerebral cortex of the pond turtle, Pseudemys scripta elegans. Ph.D. Dissertation, Harvard University.Google Scholar
Douglas, R.J., Martin, A.C. & Whitteridge, D. (1991). An intra-cellular analysis of the visual response of neurones in cat visual cortex. Journal of Physiology (London) 440, 659696.CrossRefGoogle Scholar
Douglas, R.J. & Martin, A.C. (1991). A functional microcircuit for the cat visual cortex. Journal of Physiology (London) 440, 735769.CrossRefGoogle ScholarPubMed
Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. & Reitbock, H.J. (1988). Coherent oscillations: A mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biological Cybernetics 60, 121130.CrossRefGoogle ScholarPubMed
Fan, T.X., Rosenberg, A.F. & Ariel, M. (1993). Visual-response properties of units in the turtle cerebellar granular layer in vitro. Journal of Neurophysiology 4, 13141322.CrossRefGoogle Scholar
Ferster, D. (1986). Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex. Journal of Neuroscience 6, 12841301.CrossRefGoogle ScholarPubMed
Ferster, D. (1987). Origin of orientation-selective EPSPs in simple cells of cat visual cortex. Journal of Neuroscience 7, 17801791.CrossRefGoogle ScholarPubMed
Ferster, D. (1988). Spatially opponent excitation and inhibition in simple cells of the cat visual cortex. Journal of Neuroscience 8, 11721180.CrossRefGoogle ScholarPubMed
Ferster, D. & Lindstrom, S. (1983). An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. Journal of Physiology (London) 342, 181215.CrossRefGoogle ScholarPubMed
Frostig, R.D., Lieke, E.E., Ts'o, D.Y., Grinvald, A. (1990). Cortical functional architecture and local coupling between neuronal activity and the micro circulation revealed in vivo high-resolution optical imaging of intrinsic signals. Proceedings of the National Academy of Sciences of the U.S.A. 87, 60826086.CrossRefGoogle Scholar
Gray, C.M. & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences of the U.S.A. 86, 16981702.CrossRefGoogle ScholarPubMed
Grinvald, A., Manker, A. & Segal, M. (1982). Visualization of the spread of electrical activity in rat hippocampal slices by voltage-sensitive optical probes. Journal of Physiology 333, 269291.CrossRefGoogle ScholarPubMed
Grinvald, A., Lieke, E., Frostig, R.D., Gilbert, C.D. & Wiesel, T.N. (1986). Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature (London) 324, 361364.CrossRefGoogle ScholarPubMed
Grinvald, A., Frostig, R.D., Lieke, E. & Hildesheim, R. (1988). Optical imaging of neuronal activity. Physiological Reviews 68, 12851366.CrossRefGoogle ScholarPubMed
Grinvald, A., Lieke, E.E., Frostig, R.D. & Hildesheim, R. (1994). Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. Journal of Neuroscience 14, 25452568.CrossRefGoogle ScholarPubMed
Gupta, R.K., Salzberg, B.M., Grinvald, A., Cohen, L.B., Kamino, K., Lesher, S., Boyle, M.B., Waggoner, A.S. & Wang, C.H. (1981). Improvements in optical methods for measuring rapid changes in membrane potential. Journal of Membrane Biology 58, 123137.CrossRefGoogle ScholarPubMed
Jagadeesh, B., Wheat, H.S. & Ferster, D. (1993). Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science 262, 19011904.CrossRefGoogle ScholarPubMed
Kauer, J.S., Senseman, D.M. & Cohen, L.B. (1987). Odor-elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage-sensitive dye. Brain Research 418, 255261.CrossRefGoogle ScholarPubMed
Kriegstein, A.R. (1987). Synaptic responses of cortical pyramidal neurons to light stimulation in the isolated turtle visual system. Journal of Neuroscience 7, 24882492.Google ScholarPubMed
Larson-Prior, L.J., Ulinski, P.S. & Slater, N.T. (1991). Excitatory amino acid receptor-mediated transmission in geniculocortical and intracortical pathways within visual cortex. Journal of Neurophysiology 66, 293306.CrossRefGoogle ScholarPubMed
Lowe, L.M., Cohen, L.B., Salzberg, B.M., Obaid, A.L., & Bezanilla, F. (1985). Charge shifts probes of membrane potential. Characterization of aminostyrylpyridinum dyes on the squid giant axon. Biophysics Journal 47, 7177.CrossRefGoogle Scholar
Lutz, P.L., Rosenthal, M. & Sick, T.J. (1985). Living without oxygen: Turtle brain as a model of anaerobic metabolism. Molecular Physiology 8, 411425.Google Scholar
Mazurskaya, P.Z., Davydova, T.V. & Smirnov, G.D. (1976). Functional organization of exteroceptive projections in the forebrain of the turtle. Neuroscience Translations 1, 109117.CrossRefGoogle Scholar
Mulligan, K.A. & Ulinski, P.S. (1990). Organization of geniculocortical projections in turtles: Isoazimuth lamellae in the visual cortex. Journal of Comparative Neurology 296, 531547.CrossRefGoogle ScholarPubMed
Obermayer, K. & Blasdel, G.G. (1993). Geometry of orientation and ocular dominance columns in monkey striate cortex. Journal of Neuroscience 13, 41144129.CrossRefGoogle ScholarPubMed
Orbach, H.S. & Cohen, L.B. (1983). Optical monitoring of activity from many areas of the in vitro and in vivo salamander olfactory bulb: A new method for studying functional organization in the vertebrate central nervous system. Journal of Neuroscience 3, 22512262.CrossRefGoogle ScholarPubMed
Orbach, H.S., Cohen, L.B. & Grinvald, A. (1985). Optical mapping of electrical activity in rat somatosensory and visual cortex. Journal of Neuroscience 5, 18861895.CrossRefGoogle ScholarPubMed
Orrego, F. (1961). The reptilian forebrain I: The olfactory pathways and cortical areas in the turtle. Archives Italian Biology 99, 425445.Google Scholar
Pivovarov, A.S. & Trepakov, V.V. (1972). Intracellular analysis of unit responses to afferent stimulation in the general and hippocampal cortex of turtles. Fiziologicheskii Zhurnal SSSR Imeni I.M. Sechenova 58, 690696.Google Scholar
Prechtl, J.C. (1994). Visual motion induces synchronous oscillations in turtle visual cortex. Proceedings of the National Academy of Sciences of the U.S.A. 91, 1246712471.CrossRefGoogle ScholarPubMed
Rosenberg, A.F. & Ariel, M. (1990). Visual-response properties of neurons in turtle basal optic nucleus in vitro. Journal of Neurophysiology 39, 954969.Google Scholar
Ross, W.N. & Reichardt, L.F. (1979). Species-specific effects on the optical signals of voltage-sensitive dyes. Journal of Membrane Biology 48, 343356.CrossRefGoogle ScholarPubMed
Salzberg, B.M., Obaid, A.L. & Bezanilla, F. (1993). Microsecond response of a voltage-sensitive merocyanine dye: Fast voltage-clamp measurements on squid giant axon. Japanese Journal of Physiology 43 (Suppl. 1) S3741.Google ScholarPubMed
Senseman, D.M. (1995 a). Combined microelectrode and fast multisite optical recording of visually-evoked activity in the turtle cortex. Investigations in Ophthalmology and Vision Science 36, S693.Google Scholar
Senseman, D.M. (1995 b). High-speed imaging of neural activity in the turtle cortex evoked by “moving stimuli”. Society for Neuroscience Abstracts 21, 1653.Google Scholar
Senseman, D.M. (1996). High-speed optical imaging of afferent flow through rat olfactory bulb slices: Voltage-sensitive dye signals reveal periglomerular cell activity. Journal of Neuroscience 16, 313324.CrossRefGoogle ScholarPubMed
Senseman, D.M. & Salzberg, B.M. (1980). Electrical activity in an exocrine gland: Optical recording using a potentiometric dye. Science 208, 12691271.CrossRefGoogle Scholar
Senseman, D.M., Vasquez, S. & Nash, P.L. (1990). Animated pseudocolor activity maps (PAM's): Scientific visualization of brain electrical activity. In Chemosensory Information Processing, ed. Schilds, D., pp. 329347. NATO ASI Series Vol. H 39. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Senseman, D.M. & Rea, M.A. (1994). Fast multisite optical recording of mono- and polysynaptic activity in the hamster suprachiasmatic nucleus evoked by retinohypothalamic tract stimulation. NeuroImage 1, 247263.CrossRefGoogle ScholarPubMed
T'so, D.Y., Frostig, R.D., Lieke, E.E. & Grinvald, A. (1990). Functional organization of the primate visual cortex revealed by high resolution optical imaging. Science 249, 417420.Google Scholar
Ulinski, P.S. (1986). Organization of corticogeniculate projections in the turtle, Pseudemys scripta. Journal of Comparative Neurology 254, 529542.CrossRefGoogle ScholarPubMed
Ulinski, P.S. (1990 a). Cerebral cortex in reptiles. In Cerebral Cortex, ed. Jones, E.G. & Peters, A., pp. 307324. New York: Plenum.Google Scholar
Ulinski, P.S. (1990 b). Cell cluster variations within isoazimuth lamellae of turtle visual cortex. Society for Neuroscience Abstracts 16, 710.Google Scholar
Ulinski, P.S., Larson-Prior, L.J. & Slater, N.T. (1991). Cortical circuitry underlying visual motion analysis in turtles. In Visual Structures and Integrated Functions, ed. Arbib, M. & Ewert, J.-P., pp. 307323. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Waggoner, A.S. & Grinvald, A. (1977). Mechanisms of rapid optical changes of potential sensitive days. Annuals of the New York Academy of Sciences 303, 217242.Google Scholar
Weiss, J.C. & Ulinski, P.S. (1985). Synaptic organization of dorsal area of the turtle, Pseudemys scripta elegans. Journal of Morphology 184, 135154.CrossRefGoogle ScholarPubMed
Wu, J.-Y. & Cohen, L.B. (1993). Fast multisite optical measurement of membrane potential. In Fluorescent and Luminescent Probes for Biological Activity, ed. Mason, W.T., pp. 389404. New York: Academic Press.Google Scholar