Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T01:42:46.627Z Has data issue: false hasContentIssue false

Comparison of contrast sensitivity in macaque monkeys and humans

Published online by Cambridge University Press:  21 May 2019

William H. Ridder III*
Affiliation:
Southern California College of Optometry, Marshall B. Ketchum University, Fullerton, California 92831
Kai Ming Zhang
Affiliation:
Allergan, Plc., Irvine, California 92623
Apoorva Karsolia
Affiliation:
Southern California College of Optometry, Marshall B. Ketchum University, Fullerton, California 92831
Michael Engles
Affiliation:
Allergan, Plc., Irvine, California 92623
James Burke
Affiliation:
Allergan, Plc., Irvine, California 92623
*
*Address correspondence to: William H. Ridder, III, Email: wridder@ketchum.edu

Abstract

Contrast sensitivity functions reveal information about a subject’s overall visual ability and have been investigated in several species of nonhuman primates (NHPs) with experimentally induced amblyopia and glaucoma. However, there are no published studies comparing contrast sensitivity functions across these species of normal NHPs. The purpose of this investigation was to compare contrast sensitivity across these primates to determine whether they are similar. Ten normal humans and eight normal NHPs (Macaca fascicularis) took part in this project. Previously published data from Macaca mulatta and Macaca nemestrina were also compared. Threshold was operationally defined as two misses in a row for a descending method of limits. A similar paradigm was used for the humans except that the descending method of limits was combined with a spatial, two-alternative forced choice (2-AFC) technique. The contrast sensitivity functions were fit with a double exponential function. The averaged peak contrast sensitivity, peak spatial frequency, acuity, and area under the curve for the humans were 268.9, 3.40 cpd, 27.3 cpd, and 2345.4 and for the Macaca fascicularis were 99.2, 3.93 cpd, 26.1 cpd, and 980.9. A two-sample t-test indicated that the peak contrast sensitivities (P = 0.001) and areas under the curve (P = 0.010) were significantly different. The peak spatial frequencies (P = 0.150) and the extrapolated visual acuities (P = 0.763) were not different. The contrast sensitivities for the Macaca fascicularis, Macaca mulatta, and Macaca nemestrina were qualitatively and quantitatively similar. The contrast sensitivity functions for the NHPs had lower peak contrast sensitivities and areas under the curve than the humans. Even though different methods have been used to measure contrast sensitivity in different species of NHP, the functions are similar. The contrast sensitivity differences and similarities between humans and NHPs need to be considered when using NHPs to study human disease.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Partial funding of this project was provided by Allergan.

References

Abrahamsson, M., Fabian, G. & Sjostrand, J. (1992). Refraction changes in children developing convergent or divergent strabismus. British Journal of Ophthalmology 76, 723727.CrossRefGoogle ScholarPubMed
Alexander, K.R., Barnes, C.S. & Fishman, G.A. (2003). Deficits in temporal integration for contrast processing in retinitis pigmentosa. Investigative Ophthalmology & Visual Science 44, 31633169.CrossRefGoogle ScholarPubMed
Allman, J.M. (1977). Evolution of the visual system in the early primates. In Progress in Psychology and Physiological Psychology, ed. Sprague, J.M. & Epstein, A.N., pp. 153. New York: Academic Press.Google Scholar
Anand, V., Buckley, J.G., Scally, A. & Elliott, D.B. (2003). Postural stability changes in the elderly with cataract simulation and refractive blur. Investigative Ophthalmology & Visual Science 44, 46704675.CrossRefGoogle ScholarPubMed
Bambo, M.P., Ferrandez, B., Guerri, N., Fuertes, I., Cameo, B., Polo, V., Larrosa, J.M. & Garcia-Martin, E. (2016). Evaluation of contrast sensitivity, chromatic vision, and reading ability in patients with primary open angle glaucoma. Journal of ophthalmology 2016, 7074016.CrossRefGoogle ScholarPubMed
Barlow, H.B. (1958). Temporal and spatial summation in human vision at different background intensities. Journal of Physiology 141, 337350.CrossRefGoogle ScholarPubMed
Boothe, R.G., Kiorpes, L. & Hendrickson, A. (1982). Anisometropic amblyopia in Macaca nemestrina monkeys produced by atropinization of one eye during development. Investigative Ophthalmology & Visual Science 22, 228233.Google ScholarPubMed
Burr, D.C. & Santoro, L. (2001). Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Research 41, 18911899.CrossRefGoogle ScholarPubMed
Curcio, C.A., Medeiros, N.E. & Millican, C.L. (1996). Photoreceptor loss in age-related macular degeneration. Investigative Ophthalmology & Visual Science 37, 12361249.Google ScholarPubMed
De Valois, R.L., Morgan, H. & Snodderly, D.M. (1974). Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Research 14, 7581.CrossRefGoogle ScholarPubMed
Elliott, D.B. (2006). Contrast sensitivity and glare testing. In Borish’s Clinical Refraction (2nd ed.), ed. Benjamin, W.J., pp. 247288. St. Louis, MO: Butterworth.CrossRefGoogle Scholar
Faria, B.M., Duman, F., Zheng, C.X., Waisbourd, M., Gupta, L., Ali, M., Zangalli, C., Lu, L., Wizov, S.S., Spaeth, E., Richman, J. & Spaeth, G.L. (2015). Evaluating contrast sensitivity in age-related macular degeneration using a novel computer-based test, the Spaeth/Richman contrast sensitivity test. Retina 35, 14651473.CrossRefGoogle ScholarPubMed
Fernandes, A., Bradley, D.V., Tigges, M., Tigges, J. & Herndon, J.G. (2003). Ocular measurements throughout the adult life span of rhesus monkeys. Investigative Ophthalmology & Visual Science 44, 23732380.CrossRefGoogle ScholarPubMed
Harwerth, R.S. (1982). Glenn Fry Award Lecture: Behavioral studies of amblyopia in monkeys. American Journal of Optometry and Physiological Optics 59, 535555.CrossRefGoogle ScholarPubMed
Harwerth, R.S., Crawford, M.L., Smith, E.L. 3rd & Boltz, R.L. (1981). Behavioral studies of stimulus deprivation amblyopia in monkeys. Vision Research 21, 779789.CrossRefGoogle ScholarPubMed
Harwerth, R.S. & Smith, E.L. 3rd (1985). Rhesus monkey as a model for normal vision of humans. American Journal of Optometry and Physiological Optics 62, 633641.CrossRefGoogle ScholarPubMed
Harwerth, R.S., Smith, E.L. 3rd & Boltz, R.L. (1980). Meridional amblyopia in monkeys. Experimental Brain Research 39, 351356.CrossRefGoogle ScholarPubMed
Harwerth, R.S., Smith, E.L. 3rd, Boltz, R.L., Crawford, M.L. & von Noorden, G.K. (1983). Behavioral studies on the effect of abnormal early visual experience in monkeys: Spatial modulation sensitivity. Vision Research 23, 15011510.CrossRefGoogle ScholarPubMed
Harwerth, R.S., Smith, E.L. 3rd, Crawford, M.L. & von Noorden, G.K. (1984). Effects of enucleation of the nondeprived eye on stimulus deprivation amblyopia in monkeys. Investigative Ophthalmology & Visual Science 25, 1018.Google ScholarPubMed
Harwerth, R.S., Smith, E.L. 3rd, Crawford, M.L. & von Noorden, G.K. (1989). The effects of reverse monocular deprivation in monkeys. I. Psychophysical experiments. Experimental Brain Research 74, 327347.CrossRefGoogle ScholarPubMed
Harwerth, R.S., Smith, E.L. 3rd, Duncan, G.C., Crawford, M.L. & von Noorden, G.K. (1986a). Effects of enucleation of the fixating eye on strabismic amblyopia in monkeys. Investigative Ophthalmology & Visual Science 27, 246254.Google Scholar
Harwerth, R.S., Smith, E.L. 3rd, Duncan, G.C., Crawford, M.L. & von Noorden, G.K. (1986b). Multiple sensitive periods in the development of the primate visual system. Science 232, 235238.CrossRefGoogle Scholar
Harwerth, R.S., Smith, E.L. 3rd, Paul, A.D., Crawford, M.L. & von Noorden, G.K. (1991). Functional effects of bilateral form deprivation in monkeys. Investigative Ophthalmology & Visual Science 32, 23112327.Google ScholarPubMed
Hawkins, A.S., Szlyk, J.P., Ardickas, Z., Alexander, K.R. & Wilensky, J.T. (2003). Comparison of contrast sensitivity, visual acuity, and Humphrey visual field testing in patients with glaucoma. Journal of Glaucoma 12, 134138.CrossRefGoogle ScholarPubMed
Haymes, S.A., Johnston, A.W. & Heyes, A.D. (2002). Relationship between vision impairment and ability to perform activities of daily living. Ophthalmic and Physiological Optics 22, 7991.CrossRefGoogle ScholarPubMed
Hubel, D.H., Wiesel, T.N. & LeVay, S. (1976). Functional architecture of area 17 in normal and monocularly deprived macaque monkeys. Cold Spring Harbor Symposia on Quantitative Biology 40, 581589.CrossRefGoogle ScholarPubMed
Kaas, J.H. (2007). Reconstructing the organization of neocortex of the first mammals and subsequent modifications. In Evolution of Nervous Systems: Mammals, ed. Kaas, J.H. & Krubitzer, L., pp. 2748. Oxford, UK: Elsevier.CrossRefGoogle Scholar
Kiorpes, L., Boothe, R.G., Hendrickson, A.E., Movshon, J.A., Eggers, H.M. & Gizzi, M.S. (1987). Effects of early unilateral blur on the macaque’s visual system. I. Behavioral observations. Journal of Neuroscience 7, 13181326.CrossRefGoogle ScholarPubMed
Kiorpes, L., Kiper, D.C. & Movshon, J.A. (1993). Contrast sensitivity and vernier acuity in amblyopic monkeys. Vision Research 33, 23012311.CrossRefGoogle ScholarPubMed
Kleiner, R.C., Enger, C., Alexander, M.F. & Fine, S.L. (1988). Contrast sensitivity in age-related macular degeneration. Archives of Ophthalmology 106, 5557.CrossRefGoogle ScholarPubMed
Krubitzer, L. (1995). The organization of neocortex in mammals: Are species differences really so different? Trends in Neurosciences 18, 408417.CrossRefGoogle ScholarPubMed
Leat, S.J. & Woodhouse, J.M. (1993). Reading performance with low vision aids: Relationship with contrast sensitivity. Ophthalmic and Physiological Optics 13, 916.CrossRefGoogle ScholarPubMed
Li, J., Spiegel, D.P., Hess, R.F., Chen, Z., Chan, L.Y., Deng, D., Yu, M. & Thompson, B. (2015). Dichoptic training improves contrast sensitivity in adults with amblyopia. Vision Research 114, 161172.CrossRefGoogle ScholarPubMed
Lord, S.R. & Dayhew, J. (2001). Visual risk factors for falls in older people. Journal of the American Geriatrics Society 49, 508515.CrossRefGoogle ScholarPubMed
McCann, J.J., Savoy, R.L., Hall, J.A. Jr. & Scarpetti, J.J. (1974). Visibility of continuous luminance gradients. Vision Research 14, 917927.CrossRefGoogle ScholarPubMed
McKendrick, A.M., Sampson, G.P., Walland, M.J. & Badcock, D.R. (2007). Contrast sensitivity changes due to glaucoma and normal aging: Low-spatial-frequency losses in both magnocellular and parvocellular pathways. Investigative Ophthalmology & Visual Science 48, 21152122.CrossRefGoogle ScholarPubMed
Meng, W., Butterworth, J., Malecaze, F. & Calvas, P. (2011). Axial length of myopia: A review of current research. Ophthalmologica 225, 127134.CrossRefGoogle ScholarPubMed
Miller, M., Pasik, P. & Pasik, T. (1980). Extrageniculostriate vision in the monkey. VII. Contrast sensitivity functions. Journal of Neurophysiology 43, 15101526.CrossRefGoogle ScholarPubMed
Mountcastle, V.B. (1978). An organizing principle for cerebral functions: The unit module and the distributed system. In The Mindful Brain, ed. Edelman, G.M., pp. 750. Cambridge, MA: MIT Press.Google Scholar
Nusinowitz, S., Ridder, W.H. 3rd & Ramirez, J. (2007). Temporal response properties of the primary and secondary rod-signaling pathways in normal and Gnat2 mutant mice. Experimental Eye Research 84, 11041114.CrossRefGoogle ScholarPubMed
Owsley, C., Stalvey, B.T., Wells, J., Sloane, M.E. & McGwin, G. Jr (2001). Visual risk factors for crash involvement in older drivers with cataract. Archives of Ophthalmology 119, 881887.CrossRefGoogle ScholarPubMed
Pelli, D.G. & Zhang, L. (1991). Accurate control of contrast on microcomputer displays. Vision Research 31, 13371350.CrossRefGoogle ScholarPubMed
Ridder, W.H. 3rd & Nusinowitz, S. (2006). The visual evoked potential in the mouse–origins and response characteristics. Vision Research 46, 902913.CrossRefGoogle ScholarPubMed
Robson, J.G. & Graham, N. (1981). Probability summation and regional variation in contrast sensitivity across the visual field. Vision Research 21, 409418.CrossRefGoogle ScholarPubMed
Rockel, A.J., Hiorns, R.W. & Powell, T.P. (1980). The basic uniformity in structure of the neocortex. Brain 103, 221244.CrossRefGoogle ScholarPubMed
Rogers, G.L., Bremer, D.L. & Leguire, L.E. (1987). The contrast sensitivity function and childhood amblyopia. American Journal of Ophthalmology 104, 6468.CrossRefGoogle ScholarPubMed
Ross, J.E., Bron, A.J. & Clarke, D.D. (1984). Contrast sensitivity and visual disability in chronic simple glaucoma. British Journal of Ophthalmology 68, 821827.CrossRefGoogle ScholarPubMed
Rubin, G.S., Roche, K.B., Prasada-Rao, P. & Fried, L.P. (1994). Visual impairment and disability in older adults. Optometry and Vision Science 71, 750760.CrossRefGoogle ScholarPubMed
Smith, E.L. 3rd, Chino, Y.M., Ni, J., Cheng, H., Crawford, M.L. & Harwerth, R.S. (1997). Residual binocular interactions in the striate cortex of monkeys reared with abnormal binocular vision. Journal of Neurophysiology 78, 13531362.CrossRefGoogle ScholarPubMed
Souza, G.S., Gomes, B.D. & Silveira, L.C. (2011). Comparative neurophysiology of spatial luminance contrast sensitivity. Psychology & Neurosciences 4, 2948.CrossRefGoogle Scholar
Szentagothai, J. (1975). The ‘module-concept’ in cerebral cortex architecture. Brain Research 95, 475496.CrossRefGoogle ScholarPubMed
Szlyk, J.P., Seiple, W., Fishman, G.A., Alexander, K.R., Grover, S. & Mahler, C.L. (2001). Perceived and actual performance of daily tasks: Relationship to visual function tests in individuals with retinitis pigmentosa. Ophthalmology 108, 6575.CrossRefGoogle ScholarPubMed
Turano, K., Rubin, G.S., Herdman, S.J., Chee, E. & Fried, L.P. (1994). Visual stabilization of posture in the elderly: Fallers vs. nonfallers. Optometry and Vision Science 71, 761769.CrossRefGoogle ScholarPubMed
Uhlrich, D.J., Essock, E.A. & Lehmkuhle, S. (1981). Cross-species correspondence of spatial contrast sensitivity functions. Behavioural Brain Research 2, 291299.CrossRefGoogle ScholarPubMed
van Nes, F.L., Koenderink, J.J., Nas, H. & Bouman, M.A. (1967). Spatiotemporal modulation transfer in the human eye. Journal of the Optical Society of America 57, 10821088.CrossRefGoogle ScholarPubMed
Weinreb, R.N., Aung, T. & Medeiros, F.A. (2014). The pathophysiology and treatment of glaucoma: A review. Jama 311, 19011911.CrossRefGoogle ScholarPubMed
Wensveen, J.M., Harwerth, R.S., Hung, L.F., Ramamirtham, R., Kee, C.S. & Smith, E.L. 3rd (2006). Brief daily periods of unrestricted vision can prevent form-deprivation amblyopia. Investigative Ophthalmology & Visual Science 47, 24682477.CrossRefGoogle ScholarPubMed
Wensveen, J.M., Smith, E.L. 3rd, Hung, L.F. & Harwerth, R.S. (2011). Brief daily periods of unrestricted vision preserve stereopsis in strabismus. Investigative Ophthalmology & Visual Science 52, 48724879.CrossRefGoogle ScholarPubMed
Wiesel, T.N. & Raviola, E. (1979). Increase in axial length of the macaque monkey eye after corneal opacification. Investigative Ophthalmology & Visual Science 18, 12321236.Google ScholarPubMed
Williams, R.A. & Boothe, R.G. (1983). Effects of defocus on monkey (Macaca nemestrina) contrast sensitivity: Behavioral measurements and predictions. American Journal of Optometry and Physiological Optics 60, 106111.CrossRefGoogle ScholarPubMed
Williams, R.A., Boothe, R.G., Kiorpes, L. & Teller, D.Y. (1981). Oblique effects in normally reared monkeys (Macaca nemestrina): Meridional variations in contrast sensitivity measured with operant techniques. Vision Research 21, 12531266.CrossRefGoogle ScholarPubMed
Wood, J.M. & Troutbeck, R. (1994). Effect of visual impairment on driving. Human Factors 36, 476487.CrossRefGoogle ScholarPubMed