Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T13:27:51.124Z Has data issue: false hasContentIssue false

Chromatic detection and discrimination in the periphery: A postreceptoral loss of color sensitivity

Published online by Cambridge University Press:  26 January 2004

JESSICA R. NEWTON
Affiliation:
Psychology Department, Northeastern University, 125 Nightingale Hall, Boston
RHEA T. ESKEW
Affiliation:
Psychology Department, Northeastern University, 125 Nightingale Hall, Boston

Abstract

The peripheral visual field is marked by a deterioration in color sensitivity, sometimes attributed to the random wiring of midget bipolar cells to cone photoreceptors in the peripheral retina (Mullen, 1991; Mullen & Kingdom, 1996). Using psychophysical methods, we explored differences in the sensitivity of peripheral color mechanisms with detection and discrimination of 2-deg spots at 18-deg eccentricity, and find evidence for a postreceptoral locus for the observed loss in sensitivity. As shown before, observers' sensitivity to green was lower than to red in the periphery, although the magnitude of this effect differed across observers. These results suggest that the asymmetry in peripheral sensitivity occurs at a postreceptoral site, possibly a cortical one. In addition, noise masking was used to determine the cone inputs to the peripheral color mechanisms. The masked detection contours indicate that the red and green mechanisms in the periphery respond to the linear difference of approximately equally weighted L- and M-cone contrasts, just as they do in the fovea. Thus, if the midget retinal ganglion system is responsible for red/green color perception in the fovea, it is likely to be responsible at 18-deg eccentricity as well.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramov, I., Gordon, J., & Chan, H. (1991). Color appearance in the peripheral retina: Effects of stimulus size. Journal of the Optical Society of America A 8, 404414.CrossRefGoogle Scholar
Bone, R.A., Landrum, J.T., Fernandez, L., & Tarsis, S.L. (1988). Analysis of the macular pigment by HPLC: Retinal distribution and age study. Investigative Ophthalmology and Visual Science 29, 843849.Google Scholar
Boring, E.G. (1942). Sensation and Perception in the History of Experimental Psychology. New York: Appleton-Century-Crofts, Inc.
Bowmaker, J.K. & Dartnall, H.J. (1980). Visual pigments of rods and cones in a human retina. Journal of Physiology 298, 501511.CrossRefGoogle Scholar
Chaparro, A., Stromeyer, C.F., III., Huang, E.P., Kronauer, R.E., & Eskew, R.T., Jr. (1993). Colour is what the eye sees best. Nature 361, 348350.CrossRefGoogle Scholar
Chaparro, A., Stromeyer, C.F., III, Kronauer, R.E., & Eskew, R.T., Jr. (1994). Separable red–green and luminance detectors for small flashes. Vision Research 34, 751762.CrossRefGoogle Scholar
Chaparro, A., Stromeyer, C.F., III, Chen, G., & Kronauer, R.E. (1995). Human cones appear to adapt at low light levels: Measurements on the red–green detection mechanism. Vision Research 35, 31033118.CrossRefGoogle Scholar
Cole, G.R., Hine, T., & McIlhagga, W. (1993). Detection mechanisms in L-, M-, and S-cone contrast space. Journal of the Optical Society of America A 10, 3851.CrossRefGoogle Scholar
Connors, M.M. & Kelsey, P.A. (1961). Shape of the red and green color zone gradients. Journal of the Optical Society of America 51, 874877.CrossRefGoogle Scholar
Curcio, C.A., Sloan, K.R., Kalina, R.E., & Hendrikson, A.E. (1990). Human photoreceptor topography. Journal of Comparative Neurology 292, 497523.CrossRefGoogle Scholar
Dacey, D.M. (1999). Primate retina: Cell types, circuits and color opponency. Progress in Retinal and Eye Research 18, 737763.CrossRefGoogle Scholar
Deeb, S.S., Diller, L.C., Williams, D.R., & Dacey, D.M. (2000). Interindividual and topographical variation of L:M cone ratios in monkey retinas. Journal of the Optical Society of America A 17, 538544.CrossRefGoogle Scholar
De Valois, R.L., De Valois, K.K., Switkes, E., & Mahon, L. (1997). Hue scaling of isoluminant and cone-specific lights. Vision Research 37, 885897.CrossRefGoogle Scholar
Eskew, R.T., Jr., McLellan, J.S., & Giulianini, F. (1999). Chromatic detection and discrimination. In Color Vision: From Genes to Perception, ed. Gegenfurtner, K. & Sharpe, L.T., pp. 345368. Cambridge, United Kingdom: Cambridge University Press.
Eskew, R.T., Jr., Newton, J.R., & Giulianini, F. (2001). Chromatic detection and discrimination analyzed by a Bayesian classifier. Vision Research 41, 893909.CrossRefGoogle Scholar
Giulianini, F. & Eskew, R.T., Jr. (1998). Chromatic masking in the (ΔL/L, ΔM/M) plane of cone-contrast space reveals only two detection mechanisms. Vision Research 38, 39133926.CrossRefGoogle Scholar
Gouras, P. (1974). Opponent-colour cells in different layers of foveal striate cortex. Journal of Physiology 238, 583602.CrossRefGoogle Scholar
Graham, N.V.S. (1989). Visual Pattern Analyzers. New York: Oxford University Press.CrossRef
Hagstrom, S.A., Neitz, J., & Neitz, M. (1998). Variations in cone populations for red–green color vision examined by analysis of mRNA. Neuroreport 9, 19631967.CrossRefGoogle Scholar
Harnad, S. (1987). Introduction: Psychophysical and cognitive aspects of categorial perception: A critical review. Categorical Perception. Cambridge, United Kingdom: Cambridge University Press.
Hendrickson, A. & Drucker, D. (1992). The development of parafoveal and mid-peripheral human retina. Behavioural Brain Research 49, 2131.CrossRefGoogle Scholar
Hood, D.C. & Finkelstein, M.A. (1986). Sensitivity to light. In Handbook of Perception and Human Performance. Volume 1: Sensory Processes and Perception, ed. Boff, K.R., Kaufman, L. & Thomas, J.P., pp. 5-15–66. New York: Wiley.
Hubel, D.H. & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology 195, 215243.CrossRefGoogle Scholar
Kiper, D.C., Fenstemaker, S.B., & Gegenfurtner, K.R. (1997). Chromatic properties of neurons in macaque area V2. Visual Neuroscience 14, 10611072.CrossRefGoogle Scholar
Krauskopf, J., Williams, D.R., Mandler, M.B., & Brown, A.M. (1986). Higher order color mechanisms. Vision Research 26, 2332.CrossRefGoogle Scholar
Lee, B.B. (1996). Receptive field structure in the primate retina. Vision Research 36, 631644.CrossRefGoogle Scholar
Livingstone, M.S. & Hubel, D.H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience 4, 309356.Google Scholar
Martin, P.R., Lee, B.B., White, A.J.R., Solomon, S.G., & Ruttiger, L. (2001). Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature 410, 933936.CrossRefGoogle Scholar
McLellan, J.S. & Eskew, R.T., Jr. (2000). ON and OFF S-cone pathways have different long-wave cone inputs. Vision Research 40, 24492465.CrossRefGoogle Scholar
Michael, C.R. (1978). Color vision mechanisms in monkey striate cortex: Dual-opponent cells with concentric receptive fields. Journal of Neurophysiology 41, 572588.Google Scholar
Mollon, J.D. & Bowmaker, J.K. (1992). The spatial arrangement of cones in the primate fovea. Nature 360, 677679.CrossRefGoogle Scholar
Moreland, J.D. & Cruz, A. (1959). Colour perception with the peripheral retina. Optica Acta 6, 117151.CrossRefGoogle Scholar
Mullen, K.T. (1991). Colour vision as a post-receptoral specialization of the central visual field. Vision Research 31, 119130.CrossRefGoogle Scholar
Mullen, K.T. & Kulikowski, J.J. (1990). Wavelength discrimination at detection threshold. Journal of the Optical Society of America A 7, 733742.CrossRefGoogle Scholar
Mullen, K.T. & Kingdom, F.A. (1996). Losses in peripheral colour sensitivity predicted from “hit and miss” post-receptoral cone connections. Vision Research 36, 19952000.CrossRefGoogle Scholar
Patel, A.S. & Jones, R.W. (1968). Increment and decrement visual thresholds. Journal of the Optical Society of America 58, 696699.CrossRefGoogle Scholar
Pelli, D.G. & Zhang, L. (1991). Accurate control of contrast on microcomputer displays. Vision Research 31, 13371350.CrossRefGoogle Scholar
Polyak, S.L. (1941). The Retina. Chicago, Illinois: University of Chicago Press.
Powell, I. (1981). Lenses for correcting chromatic aberration of the eye. Applied Optics 20, 41524155.CrossRefGoogle Scholar
Quick, R.F., Jr. (1974). A vector-magnitude model of contrast detection. Kybernetik 16, 6567.CrossRefGoogle Scholar
Rodieck, R.W. (1998). The First Steps in Seeing. Sunderland, Massachusetts: Sinauer.
Roorda, A., Metha, A.B., Lennie, P., & Williams, D.R. (2001). Packing arrangement of the three cone classes in primate retina. Vision Research 41, 12911306.CrossRefGoogle Scholar
Sankeralli, M.J. & Mullen, K.T. (1996). Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms. Journal of the Optical Society of America A 13, 906915.CrossRefGoogle Scholar
Sankeralli, M.J. & Mullen, K.T. (1997). Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space. Journal of the Optical Society of America A 14, 26332646.CrossRefGoogle Scholar
Schnapf, J.L., Nunn, B.J., Meister, M., & Baylor, D.A. (1990). Visual transduction in cones of the monkey Macaca fascicularis. Journal of Physiology 427, 681713.CrossRefGoogle Scholar
Sharpe, L.T. & Stockman, A. (1999). Rod pathways: The importance of seeing nothing. Trends in Neurosciences 22, 497504.CrossRefGoogle Scholar
Sharpe, L.T., Stockman, A., Knau, H., & Jagle, H. (1998). Macular pigment densities derived from central and peripheral spectral sensitivity differences. Vision Research 38, 32333239.CrossRefGoogle Scholar
Smith, V.C. & Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research 15, 161171.CrossRefGoogle Scholar
Stabell, U. & Stabell, B. (1984). Color-vision mechanisms of the extrafoveal retina. Vision Research 24, 19691975.CrossRefGoogle Scholar
Stockman, A. & Sharpe, L.T. (2000). The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Research 40, 17111737.CrossRefGoogle Scholar
Stockman, A., Sharpe, L.T., & Fach, C. (1999). The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches. Vision Research 39, 29012927.CrossRefGoogle Scholar
Stromeyer, C.F., III, Cole, G.R., & Kronauer, R.E. (1985). Second-site adaptation in the red–green chromatic pathways. Vision Research 25, 219237.CrossRefGoogle Scholar
Stromeyer, C.F., III., Lee, J., & Eskew, R.T., Jr. (1992). Peripheral chromatic sensitivity for flashes: A post-receptoral red–green asymmetry. Vision Research 32, 18651873.CrossRefGoogle Scholar
Tootell, R.B., Silverman, M.S., Hamilton, S.L., De Valois, R.L., & Switkes, E. (1988). Functional anatomy of macaque striate cortex. III. Color. Journal of Neuroscience 8, 15691593.Google Scholar
Tyler, C.W., Chan, H., & Liu, L. (1992). Different spatial tunings for ON and OFF pathway stimulation. Ophthalmic and Physiological Optics 12, 233240.Google Scholar
van Norren, D. & Vos, J.J. (1974). Spectral transmission of the human ocular media. Vision Research 14, 12371244.CrossRefGoogle Scholar
Wandell, B.A. (1985). Color measurement and discrimination. Journal of the Optical Society of America A 2, 6271.CrossRefGoogle Scholar
Wässle, H. & Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiological Reviews 71, 447480.Google Scholar
Wässle, H., Grunert, U., Martin, P.R., & Boycott, B.B. (1994). Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina. Vision Research 34, 561579.CrossRefGoogle Scholar
Watson, A.B. (1979). Probability summation over time. Vision Research 19, 515522.CrossRefGoogle Scholar
Watson, A.B. & Robson, J.G. (1981). Discrimination at threshold: Labelled detectors in human vision. Vision Research 21, 11151122.CrossRefGoogle Scholar