Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-07T08:05:13.541Z Has data issue: false hasContentIssue false

Catecholaminergic amacrine cells in the dog and wolf retina

Published online by Cambridge University Press:  02 June 2009

Leo Peichl
Affiliation:
Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, W-6000 Frankfurt, Germany

Abstract

Catecholaminergic (presumed dopaminergic) amacrine cells in the retinae of Beagle dogs (canis lupus f. familiaris) and wolves (canis lupus) were visualized with an antiserum against tyrosine hydroxylase (TH). In both species, TH immunoreactivity is found in a population of amacrine cells with large somata (about 14 μm diameter) and large, moderately branched dendritic trees. Somata are located in the proximal inner nuclear layer (normal amacrines) or in the ganglion cell layer (displaced amacrines). Most dendrites stratify in a narrow band in the inner plexiform layer close to the inner nuclear layer, where they form a dense plexus with the characteristic pattern of “dendritic rings.” The displaced cells have some of their dendrites in a proximal stratum of the inner plexiform layer. A few immunopositive processes are found in the outer plexiform layer (interplexiform processes).

In Beagle dogs, the cell density of catecholaminergic amacrines varies from less than 1/mm2 in far periphery to 40–55/mm2 in central retina (mean density 21/mm2). The proportion of displaced amacrines varies locally from 10 to 85% (overall proportion 41% in one retina). In the wolf, densities of catecholaminergic cells range between about 3/mm2 in peripheral and up to 35/mm2 in central retina. The proportion of displaced cells is somewhat lower than in dogs, varying between 11 and 31% across the retina.

The morphology and density distribution of canine catecholaminergic amacrines resemble that of other mammalian retinae. A marked difference, however, is the high percentage of displaced cells in both dog and wolf retina; it is the highest found in any mammal so far. The displaced and normal cells appear to be members of a single functional population. A comparison of the topographic distributions of catecholaminergic amacrines, rods, and ganglion cells in the dog retina shows no consistent density correlations between these neurons that are all part of the rod pathway.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brecha, N. (1983). Retinal neurotransmitters: Histochemical and biochemical studies. In Chemical Neuroanatomy, ed. Emson, P.C., pp. 85129. New York: Raven.Google Scholar
Brecha, N.C., Oyster, C.W. & Takahashi, E.S. (1984). Identification and characterisation of tyrosine hydroxylase immunoreactive amacrine cells. Investigative Ophthalmology and Visual Science 25, 6670.Google ScholarPubMed
Dacey, D.M. (1990). The dopaminergic amacrine cell. Journal of Comparative Neurology 301, 461489.CrossRefGoogle ScholarPubMed
Daw, N.W., Brunken, W.J. & Jensen, R.J. (1989). The function of monoamines in the rabbit retina. In Neurobiology of the Inner Retina, ed. Weiler, R. & Osborne, N.N., pp. 363374. Berlin: Springer.CrossRefGoogle Scholar
Daw, N.W., Jensen, R.J., & Brunken, W.J. (1990). Rod pathways in mammalian retinae. Trends in Neuroscience 13, 110115.CrossRefGoogle ScholarPubMed
Ehinger, B. (1983). Functional role of dopamine in the retina. Progress in Retinal Research 1, 213232.CrossRefGoogle Scholar
Hokoç, J.N. & Mariani, A.P. (1987). Tyrosine hydroxylase immunoreactivity in the rhesus monkey retina reveals synapses from bipolar cells to dopaminergic amacrine cells. Journal of Neuroscience 7, 27852793.CrossRefGoogle ScholarPubMed
Hokoç, J.N. & Mariani, A.P. (1988). Synapses from bipolar cells onto dopaminergic amacrine cells in cat and rabbit retinas. Brain Research 461, 1726.CrossRefGoogle Scholar
Hsu, S.M., Raine, L. & Fanger, H. (1981). Use of avidin-biotin peroxidase complex (ABC) in immunoperoxidase techniques. Journal of Histochemistry and Cytochemistry 29, 577580.CrossRefGoogle ScholarPubMed
Keyser, K.T., Karten, H.J., Katz, B. & Bohn, M.C. (1987). Catecholaminergic horizontal and amacrine cells in the ferret retina. Journal of Neuroscience 7, 39964004.CrossRefGoogle ScholarPubMed
Kolb, H. & Wang, H.H. (1985). The distribution of photoreceptors, dopaminergic amacrine cells and ganglion cells in the retina of the North American opossum (Didelphis virginiana). Vision Research 25, 12071221.CrossRefGoogle ScholarPubMed
Kolb, H., Cuenca, N., Wang, H.H. & Dekorver, L. (1990). The synaptic organisation of the dopaminergic amacrine cell in the cat retina. Journal of Neurocytology 19, 343366.CrossRefGoogle ScholarPubMed
Krinke, A., Schnider, K., Lundbeck, E. & Krinke, G. (1981). Ganglionic cell distribution in the central area of the Beagle dog retina. Zentralblatt für Veterinärmedizin, Reihe C-Anatomie, Histologie, Embryologie 10, 2635.Google ScholarPubMed
Mariani, A.P. & Hokoç, J.N. (1988). Two types of tyrosine hydroxylase-immunoreactive amacrine cell in the rhesus monkey retina. Journal of Comparative Neurology 276, 8191.CrossRefGoogle ScholarPubMed
Mariani, A.P., Kolb, H. & Nelson, R. (1984). Dopamine-containing amacrine cells of rhesus monkey retina parallel rods in spatial distribution. Brain Research 322, 17.CrossRefGoogle ScholarPubMed
Masland, R.H. (1988). Amacrine cells. Trends in Neuroscience 11, 405410.CrossRefGoogle ScholarPubMed
Mitrofanis, J. & Finlay, B.L. (1990). Developmental changes in the distribution of retinal catecholaminergic neurons in hamsters and gerbits. Journal of Comparative Neurology 292, 480494.CrossRefGoogle Scholar
Mitrofanis, J., Vigny, A. & Stone, J. (1988). Distribution of catecholaminergic cells in the retina of the rat, guinea pig, cat, and rabbit: Independence from ganglion cell distribution. Journal of Comparative Neurology 267, 114.CrossRefGoogle Scholar
Müller, B. & Peichl, L. (1989). Topography of cones and rods in the tree shrew retina. Journal of Comparative Neurology 282, 581594.CrossRefGoogle ScholarPubMed
Müller, B. & Peichl, L. (1991). Morphology and distribution of catecholaminergic amacrine cells in the cone-dominated tree shrew retina. Journal of Comparative Neurology 308, 91102.CrossRefGoogle ScholarPubMed
Nguyen-Legros, J. (1988). Morphology and distribution of catecholamine-neurons in mammalian retina. Progress in Retinal Research 7, 113147.CrossRefGoogle Scholar
Nguyen-Legros, J., Berger, B., Vigny, A. & Alvarez, C. (1981). Tyrosine hydroxylase-like immunoreactive interplexiform cells in the rat retina. Neuroscience Letters 27, 255259.CrossRefGoogle ScholarPubMed
Nguyen-Legros, J., Vigny, A. & Gay, M. (1983). Post-natal development of TH-like immunoreactivity in the rat retina. Experimental Eye Research 37, 2332.CrossRefGoogle ScholarPubMed
Nguyen-Legros, J., Botteri, C., Le, Hoang P., Vigny, A. & Gay, M. (1984). Morphology of primate's dopaminergic amacrine cells as revealed by TH-like immunoreactivity on retinal flat-mounts. Brain Research 295, 145153.CrossRefGoogle ScholarPubMed
Oyster, C.W., Takahashi, E.S., Cilluffo, M. & Brecha, N.C. (1985). Morphology and distribution of tyrosine hydroxylase-like immunoreactive neurons in the cat retina. Proceedings of the National Academy of Sciences of the U.S.A. 82, 63356339.CrossRefGoogle ScholarPubMed
Oyster, C.W., Takahashi, E.S. & Brecha, N.C. (1988). Morphology of retinal dopaminergic neurons. In Dopaminergic Mechanisms in Vision, ed. Bodis-Wollner, I., pp. 1930. New York: Alan R. Liss.Google Scholar
Peichl, L. (1989). Dog retinal ganglion cells: Morphological types and breed differences in topography. Society for Neuroscience Abstracts 15, 1207.Google Scholar
Polley, E.H. & Walsh, C. (1984). A technique for flat embedding and en face sectioning of the mammalian retina for autoradiography. Journal of Neuroscience Methods 12, 5764.CrossRefGoogle ScholarPubMed
Pourcho, R.G. (1982). Dopaminergic amacrine cells in the cat retina. Brain Research 252, 101109.CrossRefGoogle ScholarPubMed
Steinberg, R.H., Reid, M. & Lacy, P.L. (1973). The distribution of rods and cones in the retina of the cat (Felis domesticus). Journal of Comparative Neurology 148, 229248.CrossRefGoogle ScholarPubMed
Takahashi, E.S. (1988). Dopaminergic neurons in the cat retina. American Journal of Optometry and Physiological Optics 65, 331336.CrossRefGoogle ScholarPubMed
Vaney, D.I. (1990). The mosaic of amacrine cells in the mammalian retina. Progress in Retinal Research 9, 49100.CrossRefGoogle Scholar
Vaney, D.I., Peichl, L. & Boycott, B.B. (1981). Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina. Journal of Comparative Neurology 199, 373391.CrossRefGoogle ScholarPubMed
Vaney, D.I., Young, H.M. & Gynther, I.C. (1991). The rod circuit in the rabbit retina. Visual Neuroscience 7, 141154.CrossRefGoogle ScholarPubMed
Versaux-Botteri, C., Nguyen-Legros, J., Vigny, A. & Raoux, N. (1984). Morphology, density, and distribution of tyrosine hydroxylase-like immunoreactive cells in the retina of mice. Brain Research 301, 192197.CrossRefGoogle ScholarPubMed
Versaux-Botteri, C., Martin-Martinelli, E., Nguyen-Legros, J., Geffard, M., Vigny, A. & Denoroy, L. (1986). Regional specialisation of the rat retina: Catecholamine-containing amacrine cell characterisation and distribution. Journal of Comparative Neurology 243, 422433.CrossRefGoogle ScholarPubMed
Voigt, T. & Wässle, H. (1987).Dopaminergic innervation of All amacrine cells in mammalian retina. Journal of Neuroscience 7, 41154128.CrossRefGoogle ScholarPubMed
Wässle, H. & Riemann, H.J. (1978). The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society B (London) 200, 441461.Google Scholar
Wässle, H., Levick, W.R. & Cleland, B.G. (1975). The distribution of the alpha-type of ganglion cells in the cat's retina. Journal of Comparative Neurology 159, 419437.CrossRefGoogle ScholarPubMed
Wässle, H., Peichl, L. & Boycott, B.B. (1981) Dendritic territories of cat retinal ganglion cells. Nature 292, 344345.CrossRefGoogle ScholarPubMed
Wässle, H., Chun, M.H. & Müller, F. (1987). Amacrine cells in the ganglion cell layer of the cat retina. Journal of Comparative Neurology 265, 391408.CrossRefGoogle ScholarPubMed
Wulle, I. & Schnitzer, J. (1989). Distribution and morphology of tyrosine hydroxylase-immunoreactive neurons in the developing mouse retina. Developmental Brain Research 48, 5972.CrossRefGoogle ScholarPubMed