Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T02:27:21.033Z Has data issue: false hasContentIssue false

Behavioral and neural effects of chromatic isoluminance in the primate visual motion system

Published online by Cambridge University Press:  02 June 2009

Karen R. Dobkins*
Affiliation:
Vision Center Laboratory, The Salk Institute for Biological Studies, La Jolla
Thomas D. Albright
Affiliation:
Vision Center Laboratory, The Salk Institute for Biological Studies, La Jolla
*
Correspondence to: Psychology Department NI-25, University of Washington, Seattle, WA 98195, USA.

Abstract

We have previously reported that the responses of individual neurons in macaque visual area MT elicited by movement of contrast-reversing heterochromatic red/green borders are largest when the two hues are “balanced” or isoluminant (Dobkins & Albright, 1994). This “neural” isoluminant point was found to vary somewhat across the sample of neurons. Here, we compare the average neural isoluminant point in area MT to a behavioral measure of isoluminance, obtained using a modification of an oculomotor procedure developed by Chaudhuri and Albright (1992). These behavioral estimates of isoluminance closely parallel the neuronal data obtained from area MT. In accordance with previous evidence (e.g. Lee et al., 1988; Kaiser et al., 1990; Valberg et al., 1992), this correlation suggests that activity within the dorsal/magnocellular stream underlies behavioral expression of chromatic isoluminance.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, T.D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology 52, 11061130.CrossRefGoogle ScholarPubMed
Anstis, S.M. (1970). Phi movement as a subtractive process. Vision Research 10, 14111430.Google Scholar
Anstis, S.M. & Cavanagh, P. (1983). A minimum motion technique for judging equiluminance. In Colour Vision: Physiology and Psychophysics, ed. Mollon, J.D. & Sharpe, L.T., pp. 156166. London: Academic.Google Scholar
Anstis, S. & Mather, G. (1985). Effects of luminance and contrast on direction of ambiguous apparent motion. Perception 14, 167179.Google Scholar
Boynton, R.M. (1986). A system of photometry and colorimetry based on cone excitations. COLOR Research and Application 11, 244252.Google Scholar
Cavanagh, P. & Anstis, S.M. (1991). The contribution of color to motion in normal and color-deficient observers. Vision Research 31, 21092148.CrossRefGoogle ScholarPubMed
Cavanagh, P., MacLeod, D.I.A. & Anstis, S.M. (1987). Equiluminance: Spatial and temporal factors and the contribution of blue-sensitive cones. Journal of the Optical Society of America 4, 14281438.CrossRefGoogle ScholarPubMed
Cavanagh, P., Tyler, C.W. & Favreau, O.E. (1984). Perceived velocity of moving chromatic gratings. Journal of the Optical Society of America 1, 893899.Google Scholar
Charles, E.R. & Logothetis, N.K. (1989). The responses of middle temporal (MT) neurons to isoluminant stimuli. Investigative Ophthalmology and Visual Science 30, 427.Google Scholar
Chaudhuri, A. & Albright, T.D. (1992). Heterochromatic fusion nystagmus: Its use in estimating chromatic equaluminance in humans and monkeys. Vision Research 32, 17451759.Google Scholar
Cushman, W.B. & Levinson, J.Z. (1983). Phase shift in red and green counterphase flicker at high frequencies. Journal of the Optical Society of America 73, 15571561.Google Scholar
Derrington, A.M., Krauskopf, J. & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology 357, 241265.Google Scholar
De Valois, R.L., Morgan, H.C., Polson, M., Mead, W.R. & Hull, E. (1974). Psychophysical studies of monkey vision —I. Macaque luminosity and color vision tests. Vision Research 14, 5367.Google Scholar
Dobkins, K.R. & Albright, T.D. (1990). Color facilitates motion correspondence in visual area MT. Society for Neuroscience Abstracts 16, 1220.Google Scholar
Dobkins, K.R. & Albright, T.D. (1993). What happens if it changes color when it moves? Psychophysical experiments on the nature of chromatic input to motion detectors. Vision Research 33, 10191036.Google Scholar
Dobkins, K.R. & Albright, T.D. (1994). What happens if it changes color when it moves? The nature of chromatic input to macaque visual area MT. Journal of Neuroscience 14, 48544870.Google Scholar
Flitcroft, D.I. (1989). The interactions between chromatic aberration, defocus and stimulus chromaticity: Implications for visual physiology and colorimetry. Vision Research 29, 349360.Google Scholar
Gegenfurtner, K.R., Kiper, D.C., Beusmans, J.M.H., Caradini, M., Zaidi, Q. & Movshon, J.A. (1994). Chromatic properties of neurons in macaque MT. Visual Neuroscience 11, 455466.CrossRefGoogle ScholarPubMed
Glickstein, M., Cohen, J.L., Dixon, B., Gibson, A., Hollins, M., LaBossier, E. & Robinson, F. (1980). Corticopontine visual projections in macaque monkeys. Journal of Comparative Neurology 190, 209229.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Livingstone, M.S. (1990). Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey. Journal of Neuroscience 10, 22232237.CrossRefGoogle ScholarPubMed
Judge, S.J., Richmond, B.J. & Chu, F.C. (1980). Implantation of magnetic search coils for measurement of eye position: An improved method. Vision Research 20, 535538.CrossRefGoogle ScholarPubMed
Kaiser, P.K., Lee, B.B., Martin, P.R. & Valsero, A. (1990). The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina. Journal of Physiology 422, 153183.Google Scholar
Kelly, D.H. (1983). Spatiotemporal variation of chromatic and achromatic contrast thresholds. Journal of the Optical Society of America 73, 742750.CrossRefGoogle ScholarPubMed
Kolers, P.A. (1972). Aspects of Motion Perception. Oxford: Pergamon Press.Google Scholar
Komatsu, H. & Wurtz, R. H. (1988 a). Relation of cortical area MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. Journal of Neurophysiology 60, 580603.CrossRefGoogle ScholarPubMed
Komatsu, H. & Wurtz, R. H. (1988 b). Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. Journal of Neurophysiology 60, 621644.Google Scholar
Komatsu, H. & Wurtz, R. H. (1989). Modulation of pursuit eye movements by stimulation of cortical areas MT and MST. Journal of Neurophysiology 62, 3147.Google Scholar
Lee, B.B., Martin, P.R. & Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. Journal of Physiology 404, 323347.Google Scholar
Lee, B.B., Martin, P.R., Valberg, A. & Kremers, J. (1993). Physiological mechanisms underlying psychophysical sensitivity to combined luminance and chromatic modulation. Journal of the Optical Society of America A 10, 14031412.CrossRefGoogle ScholarPubMed
Lisberger, S.G. & Westbrook, L.E. (1985). Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys. Journal of Neuroscience 5, 16621673.CrossRefGoogle ScholarPubMed
Livingstone, M.S. & Hubel, D.H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement and depth. Journal of Neuroscience 7, 34163468.Google Scholar
Logothetis, N.K. & Charles, E.R. (1990). The minimum motion technique applied to determine isoluminance is psychophysical experiments with monkeys. Vision Research 30, 829838.Google Scholar
Logothetis, N.K., Schiller, P.H., Charles, E.R. & Hurlbert, A.C. (1990). Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance. Science 247, 214217.Google Scholar
Macleod, D.I.A. & Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America 69, 11831186.CrossRefGoogle ScholarPubMed
Marc, R.E. & Sperling, H.G. (1977). Chromatic organization of primate cones. Science 196, 454456.Google Scholar
Maunsell, J.H.R. & Van Essen, D.C. (1983 a). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology 49, 11271147.Google Scholar
Maunsell, J.H.R. & Van Essen, D.C. (1983 b). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience 3, 25632586.CrossRefGoogle ScholarPubMed
May, J.G., Keller, E.L. & Suzuki, D.A. (1988). Smooth-pursuit eye movement deficits with chemical lesions in the dorsolateral pontine nucleus of the monkey. Journal of Neurophysiology 59, 952977.CrossRefGoogle ScholarPubMed
Mikami, A., Newsome, W.T. & Wurtz, R.H. (1986). Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and VI. Journal of Neurophysiology 55, 13281339.CrossRefGoogle Scholar
Movshon, J.A. & Lisberger, S.G. (1990). Visual motion signals supportive pursuit eye movements. Investigative Ophthalmology and Visual Science 31, 239.Google Scholar
Mullen, K.T. (1985). The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. Journal of Physiology (London) 359, 381409.Google Scholar
Mullen, K.T. (1991). Colour vision as a post-receptoral specialization of the central visual field. Vision Research 31, 119130.CrossRefGoogle ScholarPubMed
Mustari, M.J., Fuchs, A.F. & Wallman, J. (1988). Response properties of dorsolateral pontine units during smooth pursuit in the rhesus macaque. Journal of Neurophysiology 60, 664–86.Google Scholar
Nerger, J.L. & Cicerone, C.M. (1992). The ratio of L cones to M cones in the human parafoveal retina. Vision Research 32, 879888.CrossRefGoogle Scholar
Newsome, W.T., Wurtz, R.H., Duniteler, M.R. & Mikami, A. (1985). Deficits in visual motion perception following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. Journal of Neuroscience 5, 825840.CrossRefGoogle ScholarPubMed
Newsome, W.T., Mikami, A. & Wurtz, R.H. (1986). Motion selectivity in macaque visual cortex. III. Psychophysics and physiology of apparent motion. Journal of Neurophysiology 55, 13401351.Google Scholar
Newsome, W.T., Wurtz, R.H. & Komatsu, H. (1988). Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. Journal of Neurophysiology 60, 604620.Google Scholar
Pokorny, J. & Smith, V.C. (1986). Colorimetry and color discrimination. In Handbook of Perception and Human Performance, ed. Boff, K.R., Kaufman, L. & Thomas, J.P., Chapter 8. New York: Wiley.Google Scholar
Pokorny, J., Smith, V.C. & Lutze, M. (1989). Heterochromatic modulation photometry. Journal of the Optical Society of America 6, 16181623.Google Scholar
Ramachandran, V.S. & Gregory, R.L. (1978). Does color provide an input to human motion detection? Nature 275, 5556.Google Scholar
Robinson, D.A. (1963). A method of measuring eye movement using a scierai search coil in a magnetic field. IEEE Transactions in Bio-medical Engineering 10, 137145.Google Scholar
Robson, J.G. (1966). Spatial and temporal contrast sensitivity functions of the visual system. Journal of the Optical Society of America 56, 11411142.CrossRefGoogle Scholar
Saito, H., Tanaka, K., Isono, H., Yasuda, M. & Mikami, A. (1989). Directionally selective response of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent color stimuli. Experimental Brain Research 75, 114.Google Scholar
Sakata, H., Shibutani, H. & Kawano, K. (1983). Functional properties of visual tracking neurons in posterior parietal association cortex of the monkey. Journal of Neurophysiology 49, 13641380.Google Scholar
Schiller, P.H. & Colby, C.L. (1983). The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast. Vision Research 23, 16311641.Google Scholar
Schiller, P.M., Logothetis, N.K. & Charles, E.R. (1990). Functions of the colour-opponent and broad-band channels of the visual system. Nature 343, 68.Google Scholar
Sclar, G., Maunsell, J.H.R. & Lennie, P. (1990). Coding of image contrast in the central visual pathway of the macaque monkey. Vision Research 30, 110.Google Scholar
Smith, V.C. & Pokorny, J. (1972). Spectral sensitivity of color-blind observers and the cone photopigments. Vision Research 12, 20592071.Google Scholar
Smith, V.C. & Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research 15, 161171.Google Scholar
Stabell, B. & Stabell, U. (1981). Absolute spectral sensitivity at different retinal eccentricities. Journal of the Optical Society of America 71, 836840.Google Scholar
Stabell, U. & Stabell, B. (1980). Variation in density of macular pigmentation and in short-wave cone sensitivity with eccentricity. Journal of the Optical Society of America 70, 706711.Google Scholar
Suzuki, D.A., May, J.G., Keller, E.L. & Yee, R.D. (1990) Visual motion properties of neurons in dorsolateral pontine nucleus of alert monkey. Journal of Neurophysiology 63, 3759.Google Scholar
Teller, D.Y. & Lindsey, D.T. (1993). Motion at isoluminance: motion dead zones in three-dimensional color space. Vision Research 10, 13241331.Google Scholar
Ungerleider, L.G. & Desimone, R. (1986). Cortical connections of visual area MT in the macaque. Journal of Comparative Neurology 248, 190222.Google Scholar
Valsero, A., Lee, B.B., Kaiser, P.K. & Kremers, J. (1992). Responses of macaque ganglion cells to movement of chromatic borders. Journal of Physiology 458, 579602.Google Scholar
Viénot, F. (1980). Relations between inter-and intra-individual variability of color-matching functions. Experimental results. Journal of the Optical Society of America 70, 14761483.Google Scholar
Watson, A.B., Nielson, K.R.K., Poirson, A., Fitzhugh, A., Bilson, A., Nguyen, K. & Ahumada, A.I. (1986). Use of a faster frame-buffer in vision research. Behavior Research Methods, Instruments and Computers 18, 587594.Google Scholar
Wagner, G. & Boynton, R.M. (1972). Comparison of four methods of heterochromatic photometry. Journal of the Optical Society of America 62, 15081515.Google Scholar
Webster, M.A. & Mollon, J.D. (1993). Contrast adaptation dissociates different measures of luminance efficiency. Journal of the Optical Society of America A 10, 13321340.Google Scholar
Wooten, B.R., Fuld, K. & Spillman, L. (1975). Photopic spectral sensitivity of the peripheral retina. Journal of the Optical Society of America 65, 334342.Google Scholar
Zeki, S.M. (1974). Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology 236, 549573.Google Scholar