Skip to main content Accessibility help
×
Home

Sweet Taste Perception is Associated with Body Mass Index at the Phenotypic and Genotypic Level

  • Liang-Dar Hwang (a1) (a2), Gabriel Cuellar-Partida (a1) (a2), Jue-Sheng Ong (a1) (a2), Paul A. S. Breslin (a3) (a4), Danielle R. Reed (a3), Stuart MacGregor (a1), Puya Gharahkhani (a1), Nicholas G. Martin (a1) and Miguel E. Rentería (a1)...

Abstract

Investigations on the relationship between sweet taste perception and body mass index (BMI) have been inconclusive. Here, we report a longitudinal analysis using a genetically informative sample of 1,576 adolescent Australian twins to explore the relationship between BMI and sweet taste. First, we estimated the phenotypic correlations between perception scores for four different sweet compounds (glucose, fructose, neohesperidine dihydrochalcone (NHDC), and aspartame) and BMI. Then, we computed the association between adolescent taste perception and BMI in early adulthood (reported 9 years later). Finally, we used twin modeling and polygenic risk prediction analysis to investigate the genetic overlap between BMI and sweet taste perception. Our findings revealed that BMI in early adulthood was significantly associated with each of the sweet perception scores, with the strongest correlation observed in aspartame with r = 0.09 (p = .007). However, only limited evidence of association was observed between sweet taste perception and BMI that was measured at the same time (in adolescence), with the strongest evidence of association observed for glucose with a correlation coefficient of r = 0.06 (p = .029) and for aspartame with r = 0.06 (p = .035). We found a significant (p < .05) genetic correlation between glucose and NHDC perception and BMI. Our analyses suggest that sweet taste perception in adolescence can be a potential indicator of BMI in early adulthood. This association is further supported by evidence of genetic overlap between the traits, suggesting that some BMI genes may be acting through biological pathways of taste perception.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sweet Taste Perception is Associated with Body Mass Index at the Phenotypic and Genotypic Level
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sweet Taste Perception is Associated with Body Mass Index at the Phenotypic and Genotypic Level
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sweet Taste Perception is Associated with Body Mass Index at the Phenotypic and Genotypic Level
      Available formats
      ×

Copyright

Corresponding author

address for correspondence: Liang-Dar Hwang, Genetic Epidemiology Group, QIMR Berghofer Medical Research Institute, Herston QLD 4006, Australia. E-mail: Daniel.Hwang@qimrberghofer.edu.au

References

Hide All
Aarsland, A., Chinkes, D., & Wolfe, R. R. (1997). Hepatic and whole-body fat synthesis in humans during carbohydrate overfeeding. American Journal of Clinical Nutrition, 65, 17741782.
Anderson, G. H. (1995). Sugars, sweetness, and food intake. American Journal of Clinical Nutrition, 62, 195S–201S; discussion 201S-202S.
Bartoshuk, L. M., Duffy, V. B., Hayes, J. E., Moskowitz, H. R., & Snyder, D. J. (2006). Psychophysics of sweet and fat perception in obesity: Problems, solutions and new perspectives. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 361, 11371148.
Björntorp, P. (1995). Endocrine abnormalities of obesity. Metabolism, 44, 2123.
Breslin, P. A., & Spector, A. C. (2008). Mammalian taste perception. Current Biology, 18, R148–155.
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience, 4, 7.
Elks, C. E., den Hoed, M., Zhao, J. H., Sharp, S. J., Wareham, N. J., Loos, R. J., & Ong, K. K. (2012). Variability in the heritability of body mass index: A systematic review and meta-regression. Frontiers in Endocrinology (Lausanne), 3, 29.
Fox, K. R., & Hillsdon, M. (2007). Physical activity and obesity. Obesity Reviews, 8, 115121.
Green, B. G., & George, P. (2004). ‘Thermal taste’ predicts higher responsiveness to chemical taste and flavor. Chemical Senses, 29, 617628.
Green, B. G., Shaffer, G. S., & Gilmore, M. M. (1993). Derivation and evaluation of a semantic scale of oral sensation magnitude with apparent ratio properties. Chemical Senses, 18, 683702.
Grinker, J. (1978). Obesity and sweet taste. American Journal of Clinical Nutrition, 31, 10781087.
Heid, I. M., Jackson, A. U., Randall, J. C., Winkler, T. W., Qi, L., Steinthorsdottir, V., . . . Lindgren, C. M. (2010). Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nature Genetics, 42, 949960.
Hwang, L. D., Zhu, G., Breslin, P. A., Reed, D. R., Martin, N. G., & Wright, M. J. (2015). A common genetic influence on human intensity ratings of sugars and high-potency sweeteners. Twin Research and Human Genetics, 18, 361367.
Joseph, P. V., Reed, D. R., & Mennella, J. A. (2016). Individual differences among children in sucrose detection thresholds: Relationship with age, gender, and bitter taste genotype. Nursing Research, 65, 312.
Kyriazis, G. A., Smith, K. R., Tyrberg, B., Hussain, T., & Pratley, R. E. (2014). Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology, 155, 21122121.
Laffitte, A., Neiers, F., & Briand, L. (2014). Functional roles of the sweet taste receptor in oral and extraoral tissues. Current Opinion in Clinical Nutrition and Metabolic Care, 17, 379385.
Li, Y., Willer, C. J., Ding, J., Scheet, P., & Abecasis, G. R. (2010). MaCH: Using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genetic Epidemiology, 34, 816834.
Locke, A. E., Kahali, B., Berndt, S. I., Justice, A. E., Pers, T. H., Day, F. R., . . . Speliotes, E. K. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature, 518, 197206.
Masubuchi, Y., Nakagawa, Y., Ma, J., Sasaki, T., Kitamura, T., Yamamoto, Y., . . . Shibata, H. (2013). A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells. PLoS One, 8, e54500.
Medland, S. E., Nyholt, D. R., Painter, J. N., McEvoy, B. P., McRae, A. F., Zhu, G., . . . Martin, N. G. (2009). Common variants in the trichohyalin gene are associated with straight hair in Europeans. American Journal of Human Genetics, 85, 750755.
Moskowitz, H. R., Kluter, R. A., Westerling, J., & Jacobs, H. L. (1974). Sugar sweetness and pleasantness: Evidence for different psychological laws. Science, 184, 583585.
Neale, M., & Cardon, L. (1992). Methodology for genetic studies of twins and families. Dordrecht: Kluwer Academic Publishers B.V.
Nyholt, D. R. (2004). A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. American Journal of Human Genetics, 74, 765769.
Overberg, J., Hummel, T., Krude, H., & Wiegand, S. (2012). Differences in taste sensitivity between obese and non-obese children and adolescents. Archives of Disease in Childhood, 97, 10481052.
International Schizophrenia Consortium, Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., . . . Sklar, P. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748752.
Reed, D. R., & Price, R. A. (1998). Estimates of the heights and weights of family members: Accuracy of informant reports. International Journal of Obesity and related Metabolic Disorders, 22, 827835.
Rolls, E. T. (2015). Taste, olfactory, and food reward value processing in the brain. Progress in Neurobiology, 127–128, 6490.
Scaglioni, S., Salvioni, M., & Galimberti, C. (2008). Influence of parental attitudes in the development of children eating behaviour. British Journal of Nutrition, 99, S22–25.
Solomon, C. G., & Manson, J. E. (1997). Obesity and mortality: A review of the epidemiologic data. American Journal of Clinical Nutrition, 66, S1044SS1050.
Speliotes, E. K., Willer, C. J., Berndt, S. I., Monda, K. L., Thorleifsson, G., Jackson, A. U., . . . Loos, R. J. (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 42, 937948.
Wardle, J. (2007). Eating behaviour and obesity. Obesity Reviews, 8, 7375.
Wilks, S. S. (1938). The Large-sample distribution of the likelihood ratio for testing composite hypotheses. Annals of Mathematical Statistics, 9, 6062.
Wisse, B. E. (2004). The inflammatory syndrome: The role of adipose tissue cytokines in metabolic disorders linked to obesity. Journal of the American Society of Nephrology, 15, 27922800.
Wright, M. J., & Martin, N. G. (2004). Brisbane adolescent twin study: Outline of study methods and research projects. Australian Journal of Psychology, 56, 6578.

Keywords

Type Description Title
WORD
Supplementary materials

Hwang supplementary material
Figure S1

 Word (130 KB)
130 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed