Skip to main content Accessibility help
×
Home

The Nature of Nurture: Using a Virtual-Parent Design to Test Parenting Effects on Children's Educational Attainment in Genotyped Families

  • Timothy C. Bates (a1), Brion S. Maher (a2), Sarah E. Medland (a3), Kerrie McAloney (a3), Margaret J. Wright (a4) (a5), Narelle K. Hansell (a4), Kenneth S. Kendler (a6), Nicholas G. Martin (a3) and Nathan A. Gillespie (a6)...

Abstract

Research on environmental and genetic pathways to complex traits such as educational attainment (EA) is confounded by uncertainty over whether correlations reflect effects of transmitted parental genes, causal family environments, or some, possibly interactive, mixture of both. Thus, an aggregate of thousands of alleles associated with EA (a polygenic risk score; PRS) may tap parental behaviors and home environments promoting EA in the offspring. New methods for unpicking and determining these causal pathways are required. Here, we utilize the fact that parents pass, at random, 50% of their genome to a given offspring to create independent scores for the transmitted alleles (conventional EA PRS) and a parental score based on alleles not transmitted to the offspring (EA VP_PRS). The formal effect of non-transmitted alleles on offspring attainment was tested in 2,333 genotyped twins for whom high-quality measures of EA, assessed at age 17 years, were available, and whose parents were also genotyped. Four key findings were observed. First, the EA PRS and EA VP_PRS were empirically independent, validating the virtual-parent design. Second, in this family-based design, children's own EA PRS significantly predicted their EA (β = 0.15), ruling out stratification confounds as a cause of the association of attainment with the EA PRS. Third, parental EA PRS predicted the SES environment parents provided to offspring (β = 0.20), and parental SES and offspring EA were significantly associated (β = 0.33). This would suggest that the EA PRS is at least as strongly linked to social competence as it is to EA, leading to higher attained SES in parents and, therefore, a higher experienced SES for children. In a full structural equation model taking account of family genetic relatedness across multiple siblings the non-transmitted allele effects were estimated at similar values; but, in this more complex model, confidence intervals included zero. A test using the forthcoming EA3 PRS may clarify this outcome. The virtual-parent method may be applied to clarify causality in other phenotypes where observational evidence suggests parenting may moderate expression of other outcomes, for instance in psychiatry.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Nature of Nurture: Using a Virtual-Parent Design to Test Parenting Effects on Children's Educational Attainment in Genotyped Families
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Nature of Nurture: Using a Virtual-Parent Design to Test Parenting Effects on Children's Educational Attainment in Genotyped Families
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Nature of Nurture: Using a Virtual-Parent Design to Test Parenting Effects on Children's Educational Attainment in Genotyped Families
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

address for correspondence: Professor Tim Bates, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK. E-mail: tim.bates@ed.ac.uk

References

Hide All
Bates, T. C., Hansell, N. K., Martin, N. G., & Wright, M. J. (2016). When does socioeconomic status (SES) moderate the heritability of IQ? No evidence for g × SES interaction for IQ in a representative sample of 1176 Australian adolescent twin pairs. Intelligence, 56, 1015.
Belsky, D. W., Moffitt, T. E., Corcoran, D. L., Domingue, B., Harrington, H., Hogan, S., . . . Caspi, A. (2016). The genetics of success: How single-nucleotide polymorphisms associated with educational attainment relate to life-course development. Psychological Science, 27, 957972.
Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. Annual Review of Psychology, 53, 371399.
Bronfenbrenner, U., & Ceci, S. J. (1994). Nature-nurture reconceptualized in developmental perspective: A bioecological model. Psychological Review, 101, 568586.
Cesarini, D., & Visscher, P. M. (2017). Genetics and educational attainment. npj Science of Learning, 2, Article 4.
Cordell, H. J., Barratt, B. J., & Clayton, D. G. (2004). Case/pseudocontrol analysis in genetic association studies: A unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genetic Epidemiology, 26, 167185.
Dawkins, R. (1983). The extended phenotype: The long reach of the gene. Oxford, UK: Oxford University Press.
Duncan, G. J., Morris, P. A., & Rodrigues, C. (2011). Does money really matter? Estimating impacts of family income on young children's achievement with data from random-assignment experiments. Developmental Psychology, 47, 12631279.
Eaves, L. J., Pourcain, B. S., Smith, G. D., York, T. P., & Evans, D. M. (2014). Resolving the effects of maternal and offspring genotype on dyadic outcomes in genome wide complex trait analysis (‘M-GCTA’). Behavior Genetics, 44, 445455.
Flynn, J. R. (2016). Does your family make you smarter? Nature, nurture, and human autonomy. Cambridge, UK: Cambridge University Press.
Franke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., van Hulzen, K. J. E., . . . Sullivan, P. F. (2016). Genetic influences on schizophrenia and subcortical brain volumes: Large-scale proof of concept. Nature Neuroscience, 19, 420431.
Galobardes, B., Shaw, M., Lawlor, D. A., Lynch, J. W., & Davey Smith, G. (2006). Indicators of socioeconomic position (Part 1). Journal of Epidemiology and Community Health, 60, 712.
Grasby, K. L., Coventry, W. L., Byrne, B., & Olson, R. K. (2017). Little evidence that socioeconomic status modifies heritability of literacy and numeracy in Australia. Child Development. Advance online publication.
Howey, R. (2014). PseudoCons [Computer software]. Retrieved from http://www.staff.ncl.ac.uk/richard.howey/pseudocons/.
International Schizophrenia Consortium, Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., . . . Sklar, P. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748752.
Kendler, K. S. (2016). The schizophrenia polygenic risk score: To what does it predispose in adolescence? JAMA Psychiatry, 73, 193194.
Kong, A., Thorleifsson, G., Frigge, M. L., Vilhjalmsson, B. J., Young, A. I., Thorgeirsson, T. E., . . . Stefansson, K. (2018). The nature of nurture: Effects of parental genotypes. Science, 359, 424428.
Krapohl, E., Rimfeld, K., Shakeshaft, N. G., Trzaskowski, M., McMillan, A., Pingault, J. B., . . . Plomin, R. (2014). The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. Proceedings of the National Academy of Sciences of the United States of America, 111, 1527315278.
Loehlin, J. (2000). Group differences in intelligence. In Sternberg, R. J. (Ed.), The handbook of intelligence (pp. 176195). Cambridge, UK: Cambridge University Press.
Martin, N. G., & Martin, P. G. (1975). The inheritance of scholastic abilities in a sample of twins. I. Ascertainments of the sample and diagnosis of zygosity. Annals of Human Genetics, 39, 213218.
Martin, N. W., Hansell, N. K., Wainwright, M. A., Shekar, S. N., Medland, S. E., Bates, T. C., . . . Wright, M. J. (2009). Genetic covariation between the Author Recognition Test and reading and verbal abilities: What can we learn from the analysis of high performance? Behavior Genetics, 39, 417426.
McMillan, J., Beavis, A., & Jones, F. L. (2009). A new socioeconomic index for Australia. Journal of Sociology, 45, 123149.
Medland, S. E., Nyholt, D. R., Painter, J. N., McEvoy, B. P., McRae, A. F., Zhu, G., . . . Martin, N. G. (2009). Common variants in the trichohyalin gene are associated with straight hair in Europeans. American Journal of Human Genetics, 85, 750755.
Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Vol. 67. Dordrecht: Kluwer Academic Publishers.
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., . . . Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539542.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2017). Nlme: Linear and nonlinear mixed effects models. R package version 3.1-131. [Computer software] Retrieved from https://CRAN.R-project.org/package=nlme.
Plomin, R. (1994). Genetics and experience: The interplay between nature and nurture. Thousand Oaks, CA: Sage.
Plomin, R., & Loehlin, J. C. (1989). Direct and indirect IQ heritability estimates: A puzzle. Behavior Genetics, 19, 331342.
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904909.
Price, A. L., Zaitlen, N. A., Reich, D., & Patterson, N. (2010). New approaches to population stratification in genome-wide association studies. Nature Reviews Genetics, 11, 459463.
Pritchard, J. K., & Rosenberg, N. A. (1999). Use of unlinked genetic markers to detect population stratification in association studies. American Journal of Human Genetics, 65, 220228.
Puglisi, M. L., Hulme, C., Hamilton, L. G., & Snowling, M. J. (2017). The home literacy environment is a correlate, but perhaps not a cause, of variations in children's language and literacy development. Scientific Studies of Reading, 21, 498514.
Queensland Studies Authority. (2003). The 2003 Queensland core skills test retrospective. Brisbane, Australia: Author.
Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., . . . Koellinger, P. D. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340, 14671471.
Roth, B., Becker, N., Romeyke, S., Schäfer, S., Domnick, F., & Spinath, F. M. (2015). Intelligence and school grades: A meta-analysis. Intelligence, 53, 118137.
Rowe, D. C. (2001). Do people make environments or do environments make people? Annals of the New York Academy of Sciences, 935, 6274.
Scarr, S., & McCartney, K. (1983). How people make their own environments - A theory of genotype-environment effects. Child Development, 54, 424435.
Selzam, S., Krapohl, E., von Stumm, S., O'Reilly, P. F., Rimfeld, K., Kovas, Y., . . . Plomin, R. (2017). Predicting educational achievement from DNA. Molecular Psychiatry, 22, 267272.
Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R. I., Krapohl, E., . . . Posthuma, D. (2017). Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49, 11071112.
Swagerman, S. C., van Bergen, E., Dolan, C., de Geus, E. J. C., Koenis, M. M. G., Hulshoff Pol, H. E., & Boomsma, D. I. (2017). Genetic transmission of reading ability. Brain and Language, 172, 38.
Taylor, J., Roehrig, A. D., Soden Hensler, B., Connor, C. M., & Schatschneider, C. (2010). Teacher quality moderates the genetic effects on early reading. Science, 328, 512514.
Tucker-Drob, E. M., & Bates, T. C. (2016). Large cross-national differences in gene x socioeconomic status interaction on intelligence. Psychological Science, 27, 138149.
Vilhjalmsson, B. J., Yang, J., Finucane, H. K., Gusev, A., Lindstrom, S., Ripke, S., . . . Price, A. L. (2015). Modeling linkage disequilibrium increases accuracy of polygenic risk scores. American Journal of Human Genetics, 97, 576592.
Wadsworth, S. J., Corley, R. P., Hewitt, J. K., Plomin, R., & DeFries, J. C. (2002). Parent-offspring resemblance for reading performance at 7, 12 and 16 years of age in the Colorado adoption project. Journal of Child Psychology and Psychiatry, 43, 769774.
Wainwright, M. A., Wright, M. J., Geffen, G. M., Luciano, M., & Martin, N. G. (2005). The genetic basis of academic achievement on the Queensland Core Skills Test and its shared genetic variance with IQ. Behavior Genetics, 35, 133145.
Wright, M. J., & Martin, N. G. (2004). The Brisbane adolescent twin study: Outline of study methods and research projects. Australian Journal of Psychology, 56, 6578.
Zhang, Y., Qi, G., Park, J.-H., & Chatterjee, N. (2017). Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits and implications for the future. bioRxiv, 175406. doi:https://doi.org/10.1101/175406.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed