Skip to main content Accessibility help

Genetic and Environmental Effects on Weight, Height, and BMI Under 18 Years in a Chinese Population-Based Twin Sample

  • Qingqing Liu (a1), Canqing Yu (a1), Wenjing Gao (a1), Weihua Cao (a1), Jun Lyu (a1), Shengfeng Wang (a1), Zengchang Pang (a2), Liming Cong (a3), Zhong Dong (a4), Fan Wu (a5), Hua Wang (a6), Xianping Wu (a7), Guohong Jiang (a8), Binyou Wang (a9) and Liming Li (a1)...


This study examined the genetic and environmental effects on variances in weight, height, and body mass index (BMI) under 18 years in a population-based sample from China. We selected 6,644 monozygotic and 5,969 dizygotic twin pairs from the Chinese National Twin Registry (CNTR) aged under 18 years (n = 12,613). Classic twin analyses with sex limitation were used to estimate the genetic and environmental components of weight, height, and BMI in six age groups. Sex-limitation of genetic and shared environmental effects was observed, especially when puberty begins. Heritability for weight, height, and BMI was low at 0–2 years old (less than 20% for both sexes) but increased over time, accounting for half or more of the variance in the 15–17 year age group for boys. For girls, heritabilities for weight, height and BMI was maintained at approximately 30% after puberty. Common environmental effects on all body measures were high for girls (59–87%) and presented a small peak during puberty. Genetics appear to play an increasingly important role in explaining the variation in weight, height, and BMI from early childhood to late adolescence, particularly in boys. Common environmental factors exert their strongest and most independent influence specifically in the pre-adolescent period and more significantly in girls. These findings emphasize the need to target family and social environmental interventions in early childhood years, especially for females. Further studies about puberty-related genes and social environment are needed to clarify the mechanism of sex differences.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genetic and Environmental Effects on Weight, Height, and BMI Under 18 Years in a Chinese Population-Based Twin Sample
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genetic and Environmental Effects on Weight, Height, and BMI Under 18 Years in a Chinese Population-Based Twin Sample
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genetic and Environmental Effects on Weight, Height, and BMI Under 18 Years in a Chinese Population-Based Twin Sample
      Available formats


Corresponding author

address for correspondence: Liming Li and Canqing Yu, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China. E-mails: and


Hide All
Birch, L. L., & Davison, K. K. (2001). Family environmental factors influencing the developing behavioral controls of food intake and childhood overweight. Pediatric Clinics of North America, 48, 893907.
Blissett, J., & Bennett, C. (2013). Cultural differences in parental feeding practices and children's eating behaviours and their relationships with child BMI: A comparison of Black Afro-Caribbean, White British and White German samples. European Journal of Clinical Nutrition, 67, 180184.
Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., . . . Fox, J. (2011). OpenMx: An open source extended structural equation modeling framework. Psychometrika, 76, 306317.
Cardel, M., Willig, A. L., Dulin-Keita, A., Casazza, K., & Beasley, T. M. (2012). Parental feeding practices and socioeconomic status are associated with child adiposity in a multi-ethnic sample of children. Appetite, 58, 347353.
Cheah, C. S., Leung, C. Y., & Zhou, N. (2013). Understanding ‘tiger parenting’ through the perceptions of Chinese immigrant mothers: Can Chinese and U.S. parenting coexist? Asian American Journal of Psychology, 4, 3040.
Crawford, P. B., Story, M., Wang, M. C., Ritchie, L. D., & Sabry, Z. I. (2001). Ethnic issues in the epidemiology of childhood obesity. Pediatric Clinics of North America, 48, 855878.
den Hoed, M., Ekelund, U., Brage, S. O. R., Grontved, A., Zhao, J. H., Sharp, S. J., . . . Loos, R. J. (2010). Genetic susceptibility to obesity and related traits in childhood and adolescence influence of loci identified by genome-wide association studies. Diabetes, 59, 29802988.
Dubois, L., Girard, M., Girard, A., Tremblay, R., Boivin, M., & Perusse, D. (2007). Genetic and environmental influences on body size in early childhood: A twin birth-cohort study. Twin Research and Human Genetics, 10, 479485.
Dubois, L., Ohm, K. K., Girard, M., Tatone-Tokuda, F., Perusse, D., Hjelmborg, J., . . . Martin, N. G. (2012). Genetic and environmental contributions to weight, height, and BMI from birth to 19 years of age: An international study of over 12,000 twin pairs. PLoS One, 7, e30153.
Eley, T. C. (2005). Sex‐limitation models. In Everitt, B. J., & Howell, D. (Eds.), Encyclopedia of statistics in behavioral science. West Sussex, UK: Wiley.
Elks, C. E., Loos, R. J., Hardy, R., Wills, A. K., Wong, A., Wareham, N. J., . . . Ong, K. K. (2012). Adult obesity susceptibility variants are associated with greater childhood weight gain and a faster tempo of growth: The 1946 British Birth Cohort Study. American Journal of Clinical Nutrition, 95, 11501156.
Elston, R. C., Satagopan, J. M., & Sun, S. (2012). Statistical human genetics: Methods and protocols. New York: Humana Press.
Gao, W., Li, L., Cao, W., Zhan, S., Lv, J., Qin, Y., . . . Hu, Y. (2006). Determination of zygosity by questionnaire and physical features comparison in Chinese adult twins. Twin Research and Human Genetics, 9, 266271.
Grayson, D. A. (1989). Twins reared together: Minimizing shared environmental effects. Behavior Genetics, 19, 593604.
Gupta, N., Goel, K., Shah, P., & Misra, A. (2012). Childhood obesity in developing countries: Epidemiology, determinants, and prevention. Endocrine Reviews, 33, 4870.
Haberstick, B. C., Lessem, J. M., McQueen, M. B., Boardman, J. D., Hopfer, C. J., Smolen, A., . . . Hewitt, J. K. (2010). Stable genes and changing environments: Body mass index across adolescence and young adulthood. Behavior Genetics, 40, 495504.
Harris, J. R., Tambs, K., & Magnus, P. (1995). Sex-specific effects for body mass index in the new Norwegian twin panel. Genetic Epidemiology, 12, 251265.
Haworth, C., Carnell, S., Meaburn, E. L., Davis, O. S., Plomin, R., & Wardle, J. (2008). Increasing heritability of BMI and stronger associations with the FTO gene over childhood. Obesity, 16, 26632668.
Hewitt, J. K. (1989). Of biases and more in the study of twins reared together: A reply to Grayson. Behavior Genetics, 19, 605608.
Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational & Graphical Statistics, 5, 299314.
Jackson, R. W., Snieder, H., Davis, H., & Treiber, F. A. (2001). Determination of twin zygosity: A comparison of DNA with various questionnaire indices. Twin Research, 4, 1218.
Ji, F., Ning, F., Duan, H., Kaprio, J., Zhang, D., Zhang, D., . . . Silventoinen, K. (2014). Genetic and environmental influences on cardiovascular disease risk factors: A study of Chinese twin children and adolescents. Twin Research & Human Genetics, 17, 7279.
Kaakinen, M., Läärä, E., Pouta, A., Hartikainen, A., Laitinen, J., Tammelin, T. H., . . . Järvelin, M. R. (2010). Life-course analysis of a fat mass and obesity-associated (FTO) gene variant and body mass index in the Northern Finland Birth Cohort 1966 using structural equation modeling. American Journal of Epidemiology, 172, 653665.
Lajunen, H. R., Kaprio, J., Keski-Rahkonen, A., Rose, R. J., Pulkkinen, L., Rissanen, A., . . . Silventoinen, K. (2009). Genetic and environmental effects on body mass index during adolescence: A prospective study among Finnish twins. International Journal of Obesity (London), 33, 559567.
Li, L., Gao, W., Yu, C., Lv, J., Cao, W., Zhan, S., . . . Hu, Y. (2013). The Chinese national twin registry: An update. Twin Research and Human Genetics, 16, 8690.
Liu, Q. Q., Yu, C. Q., Gao, W. J., Cao, W. H., Lyu, J., Wang, S. F., . . . Li, L. M. (2015). Study on birth weight of twins in China, 1995–2012. Chinese Journal of Epidemiology, 36, 115118.
Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Neovius, M., Teixeira-Pinto, A., & Rasmussen, F. (2008). Shift in the composition of obesity in young adult men in Sweden over a third of a century. International Journal of Obesity, 32, 832836.
Ning, F., Silventoinen, K., Pang, Z. C., Kaprio, J., Wang, S. J., Zhang, D., . . . Silventoinen, K. (2013). Genetic and environmental correlations between body mass index and waist circumference in China: The Qingdao Adolescent Twin Study. Behavior Genetics, 43, 340347.
Noll, J. G., Zeller, M. H., Trickett, P. K., & Putnam, F. W. (2007). Obesity risk for female victims of childhood sexual abuse: A prospective study. Pediatrics, 120, e61–e67.
Pietiläinen, K. H., Kaprio, J., Rissanen, A., Winter, T., Rimpelä, A., Viken, R. J., . . . Rose, R. J. (1999). Distribution and heritability of BMI in Finnish adolescents aged 16 y and 17 y: A study of 4884 twins and 2509 singletons. International Journal of Obesity, 23, 107115.
Poulsen, P., Vaag, A., Kyvik, K., & Beck-Nielsen, H. (2001). Genetic versus environmental aetiology of the metabolic syndrome among male and female twins. Diabetologia, 44, 537543.
Prentice-Dunn, H., & Prentice-Dunn, S. (2012). Physical activity, sedentary behavior, and childhood obesity: A review of cross-sectional studies. Psychology, Health & Medicine, 17, 255273.
Rietveld, M. J., van Der Valk, J. C., Bongers, I. L., Stroet, T. M., Slagboom, P. E., & Boomsma, D. I. (2000). Zygosity diagnosis in young twins by parental report. Twin Research, 3, 134141.
Rutters, F., Nieuwenhuizen, A. G., Bouwman, F., Mariman, E., & Westerterp-Plantenga, M. S. (2011). Associations between a single nucleotide polymorphism of the FTO gene (rs9939609) and obesity-related characteristics over time during puberty in a Dutch children cohort. The Journal of Clinical Endocrinology & Metabolism, 96, E939–E942.
Rzehak, P., Scherag, A. E., Grallert, H., Sausenthaler, S., Koletzko, S., Bauer, C. P., . . . GINI and LISA Study Group. (2010). Associations between BMI and the FTO gene are age dependent: Results from the GINI and LISA birth cohort studies up to age 6 years. Obesity Facts, 3, 173180.
Salsberry, P. J., & Reagan, P. B. (2010). Effects of heritability, shared environment, and nonshared intrauterine conditions on child and adolescent BMI. Obesity, 18, 17751780.
Schousboe, K., Willemsen, G., Kyvik, K. O., Mortensen, J., Boomsma, D. I., Cornes, B. K., . . . Harris, J. R. (2003). Sex differences in heritability of BMI: A comparative study of results from twin studies in eight countries. Twin Research, 6, 409421.
Sherry, B., Jefferds, M. E., & Grummer-Strawn, L. M. (2007). Accuracy of adolescent self-report of height and weight in assessing overweight status: A literature review. Archives of Pediatrics & Adolescent Medicine, 161, 11541161.
Silberg, J., Rutter, M., Neale, M., & Eaves, L. (2001). Genetic moderation of environmental risk for depression and anxiety in adolescent girls. The British Journal of Psychiatry, 179, 116121.
Silventoinen, K., Bartels, M., Posthuma, D., Estourgie-van Burk, G. F., Willemsen, G., van Beijsterveldt, T. C. E. M., . . . Boomsma, D. I. (2007a). Genetic regulation of growth in height and weight from 3 to 12 years of age: A longitudinal study of Dutch twin children. Twin Research and Human Genetics, 10, 354363.
Silventoinen, K., Pietiläinen, K. H., Tynelius, P., Sorensen, T. I. A., Kaprio, J., & Rasmussen, F. (2007b). Genetic and environmental factors in relative weight from birth to age 18: The Swedish young male twins study. International Journal of Obesity, 31, 615621.
Souren, N. Y., Paulussen, A., Loos, R., Gielen, M., Beunen, G., Fagard, R., . . . Zeegers, M. P. (2007). Anthropometry, carbohydrate and lipid metabolism in the east flanders prospective twin survey: Heritabilities. Diabetologia, 50, 21072116.
Spruijt-Metz, D., Lindquist, C. H., Birch, L. L., Fisher, J. O., & Goran, M. I. (2002). Relation between mothers’ child-feeding practices and children's adiposity. American Journal of Clinical Nutrition, 75, 581586.
Tokmakidis, S. P., Christodoulos, A. D., & Mantzouranis, N. I. (2007). Validity of self-reported anthropometric values used to assess body mass index and estimate obesity in Greek school children. Journal of Adolescent Health, 40, 305310.
World Health Organization. (2014). Global status report on noncommunicable diseases 2014. Retrieved from
Wu, W. F., Pang, Z. C., & Ma, A. G. (2005). Heritability analysis on body size indices of adult twins in Qingdao. China Public Health, 21, 413415. [In Chinese].
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Liu supplementary material
Tables S1-S3

 Excel (23 KB)
23 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed