Skip to main content Accessibility help
×
Home

Aging Trajectories in Different Body Systems Share Common Environmental Etiology: The Healthy Aging Twin Study (HATS)

  • Alireza Moayyeri (a1) (a2) (a3), Deborah J. Hart (a1), Harold Snieder (a4), Christopher J. Hammond (a1), Timothy D. Spector (a1) and Claire J. Steves (a1) (a5)...

Abstract

Little is known about the extent to which aging trajectories of different body systems share common sources of variance. We here present a large twin study investigating the trajectories of change in five systems: cardiovascular, respiratory, skeletal, morphometric, and metabolic. Longitudinal clinical data were collected on 3,508 female twins in the TwinsUK registry (complete pairs:740 monozygotic (MZ), 986 dizygotic (DZ), mean age at entry 48.9 ± 10.4, range 18–75 years; mean follow-up 10.2 ± 2.8 years, range 4–17.8 years). Panel data on multiple age-related variables were used to estimate biological ages for each individual at each time point, in linear mixed effects models. A weighted average approach was used to combine variables within predefined body system groups. Aging trajectories for each system in each individual were then constructed using linear modeling. Multivariate structural equation modeling of these aging trajectories showed low genetic effects (heritability), ranging from 2% in metabolic aging to 22% in cardiovascular aging. However, we found a significant effect of shared environmental factors on the variations in aging trajectories in cardiovascular (54%), skeletal (34%), morphometric (53%), and metabolic systems (53%). The remainder was due to environmental factors unique to each individual plus error. Multivariate Cholesky decomposition showed that among aging trajectories for various body systems there were significant and substantial correlations between the unique environmental latent factors as well as shared environmental factors. However, there was no evidence for a single common factor for aging. This study, the first of its kind in aging, suggests that diverse organ systems share non-genetic sources of variance for aging trajectories. Confirmatory studies are needed using population-based twin cohorts and alternative methods of handling missing data.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Aging Trajectories in Different Body Systems Share Common Environmental Etiology: The Healthy Aging Twin Study (HATS)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Aging Trajectories in Different Body Systems Share Common Environmental Etiology: The Healthy Aging Twin Study (HATS)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Aging Trajectories in Different Body Systems Share Common Environmental Etiology: The Healthy Aging Twin Study (HATS)
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

address for correspondence : Dr Claire J. Steves, Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas’ Hospital, London SE1 7EH, UK. E-mail: claire.j.steves@kcl.ac.uk

References

Hide All
Andrew, T., Hart, D. J., Snieder, H., de, L. M., Spector, T. D., & MacGregor, A. J. (2001). Are twins and singletons comparable? A study of disease-related and lifestyle characteristics in adult women. Twin Research, 4, 464477.
Barker, D. J., Eriksson, J. G., Forsen, T., & Osmond, C. (2002). Fetal origins of adult disease: strength of effects and biological basis. International Journal of Epidemiology, 31, 12351239.
Bruder, C. E., Piotrowski, A., Gijsbers, A. A., Andersson, R., Erickson, S., Diaz de, S. T., . . . Dumanski, J. P. (2008). Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. American Journal of Human Genetics, 82, 763771.
Dato, S., Montesanto, A., Lagani, V., Jeune, B., Christensen, K., & Passarino, G. (2012). Frailty phenotypes in the elderly based on cluster analysis: a longitudinal study of two Danish cohorts. Evidence for a genetic influence on frailty. Age (Dordrecht), 34, 571582.
Derks, E. M., Dolan, C. V., & Boomsma, D. I. (2006). A test of the equal environment assumption (EEA) in multivariate twin studies. Twin Research and Human Genetics, 9, 403411.
Finkel, D., Ernsth-Bravell, M., & Pedersen, N. L. (2014). Sex differences in genetic and environmental influences on longitudinal change in functional ability in late adulthood. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 70, 709717.
Finkel, D., Pedersen, N. L., Reynolds, C. A., Berg, S., de, F. U., & Svartengren, M. (2003). Genetic and environmental influences on decline in biobehavioral markers of aging. Behavior Genetics, 33, 107123.
Fisher, A., van Jaarsveld, C. H., Llewellyn, C. H., & Wardle, J. (2010). Environmental influences on children's physical activity: Quantitative estimates using a twin design. PLoS One, 5, e10110.
Gatz, M., Reynolds, C. A., Fratiglioni, L., Johansson, B., Mortimer, J. A., Berg, S., . . . Pedersen, N. L. (2006). Role of genes and environments for explaining Alzheimer disease. Archives of General Psychiatry, 63, 168174.
Gillespie, N. A., & Martin, N. G. (2005). Multivariate genetic analysis. In Everitt, B. S. & Howell, D. C. (Eds.), Encyclopedia of statistics in behavioral science (pp. 13631370). Hoboken, NJ: John Wiley & Sons.
Hammond, C. J., Snieder, H., Spector, T. D., & Gilbert, C. E. (2000). Genetic and environmental factors in age-related nuclear cataracts in monozygotic and dizygotic twins. New England Journal of Medicine, 342, 17861790.
Hammond, C. J., Webster, A. R., Snieder, H., Bird, A. C., Gilbert, C. E., & Spector, T. D. (2002). Genetic influence on early age-related maculopathy: a twin study. Ophthalmology, 109, 730736.
Johnson, W., Deary, I. J., McGue, M., & Christensen, K. (2009). Genetic and environmental transactions linking cognitive ability, physical fitness, and education in late life. Psychology and Aging, 24, 4862.
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1993). A test of the equal-environment assumption in twin studies of psychiatric illness. Behavior Genetics, 23, 2127.
Lichtenstein, P., Holm, N. V., Verkasalo, P. K., Iliadou, A., Kaprio, J., Koskenvuo, M., . . . Hemminki, K. (2000). Environmental and heritable factors in the causation of cancer – Analyses of cohorts of twins from Sweden, Denmark, and Finland. New England Journal of Medicine, 343, 7885.
McGue, M., & Christensen, K. (2002). The heritability of level and rate-of-change in cognitive functioning in Danish twins aged 70 years and older. Experimental Aging Research, 28, 435451.
McMillen, I. C., & Robinson, J. S. (2005). Developmental origins of the metabolic syndrome: Prediction, plasticity, and programming. Physiological Reviews, 85, 571633.
Michaelsson, K., Melhus, H., Ferm, H., Ahlbom, A., & Pedersen, N. L. (2005). Genetic liability to fractures in the elderly. Archives of Internal Medicine, 165, 18251830.
Moayyeri, A., Hammond, C. J., Hart, D. J., & Spector, T. D. (2013). The UK Adult Twin Registry (TwinsUK Resource). Twin Research and Human Genetics, 16, 144149.
Pajala, S., Era, P., Koskenvuo, M., Kaprio, J., Viljanen, A., & Rantanen, T. (2006). Genetic factors and susceptibility to falls in older women. Journal of the American Geriatrics Society, 54, 613618.
Richardson, K., & Norgate, S. (2005). The equal environments assumption of classical twin studies may not hold. British Journal of Educational Psychology, 75, 339350.
Rozin, P., & Millman, L. (1987). Family environment, not heredity, accounts for family resemblances in food preferences and attitudes: A twin study. Appetite, 8, 125134.
Scarr, S. (1968). Environmental bias in twin studies. Eugenics Quarterley, 15, 3440.
Spector, T. D., Cicuttini, F., Baker, J., Loughlin, J., & Hart, D. (1996). Genetic influences on osteoarthritis in women: A twin study. BMJ, 312, 940943.
Steves, C. J., Jackson, S. H., & Spector, T. D. (2013). Cognitive change in older women using a computerised battery: A longitudinal quantitative genetic twin study. Behavior Genetics, 43, 468479.
Steves, C. J., Spector, T. D., & Jackson, S. H. (2012). Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future. Age and Ageing, 41, 581586.
Tishler, P. V., & Carey, V. J. (2007). Can comparison of MZ- and DZ-twin concordance rates be used invariably to estimate heritability? Twin Research and Human Genetics, 10, 712717.
van Dongen, J., Slagboom, P. E., Draisma, H. H., Martin, N. G., & Boomsma, D. I. (2012). The continuing value of twin studies in the omics era. Nature Reviews Genetics, 13, 640653.
Vogt, G., Huber, M., Thiemann, M., van den Boogaart, G., Schmitz, O. J., & Schubart, C. D. (2008). Production of different phenotypes from the same genotype in the same environment by developmental variation. Journal of Experimental Biology, 211, 510523.
Williams, F. M., Cherkas, L. F., Spector, T. D., & MacGregor, A. J. (2004). A common genetic factor underlies hypertension and other cardiovascular disorders. BMC Cardiovascular Disorders, 4, 20.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Moayyeri supplementary material
Moayyeri supplementary material 1

 Word (100 KB)
100 KB
PDF
Supplementary materials

Moayyeri supplementary material
Table S6

 PDF (49 KB)
49 KB

Aging Trajectories in Different Body Systems Share Common Environmental Etiology: The Healthy Aging Twin Study (HATS)

  • Alireza Moayyeri (a1) (a2) (a3), Deborah J. Hart (a1), Harold Snieder (a4), Christopher J. Hammond (a1), Timothy D. Spector (a1) and Claire J. Steves (a1) (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.