Skip to main content Accessibility help
×
Home

Experimenting with robotic intra-logistics domains

  • MARTIN GEBSER (a1), PHILIPP OBERMEIER (a1), THOMAS OTTO (a1), TORSTEN SCHAUB (a1), ORKUNT SABUNCU (a2), VAN NGUYEN (a3) and TRAN CAO SON (a3)...

Abstract

We introduce the asprilo1 framework to facilitate experimental studies of approaches addressing complex dynamic applications. For this purpose, we have chosen the domain of robotic intra-logistics. This domain is not only highly relevant in the context of today's fourth industrial revolution but it moreover combines a multitude of challenging issues within a single uniform framework. This includes multi-agent planning, reasoning about action, change, resources, strategies, etc. In return, asprilo allows users to study alternative solutions as regards effectiveness and scalability. Although asprilo relies on Answer Set Programming and Python, it is readily usable by any system complying with its fact-oriented interface format. This makes it attractive for benchmarking and teaching well beyond logic programming. More precisely, asprilo consists of a versatile benchmark generator, solution checker and visualizer as well as a bunch of reference encodings featuring various ASP techniques. Importantly, the visualizer's animation capabilities are indispensable for complex scenarios like intra-logistics in order to inspect valid as well as invalid solution candidates. Also, it allows for graphically editing benchmark layouts that can be used as a basis for generating benchmark suites.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Experimenting with robotic intra-logistics domains
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Experimenting with robotic intra-logistics domains
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Experimenting with robotic intra-logistics domains
      Available formats
      ×

Copyright

Footnotes

Hide All
1

asprilo stands for Answer Set Programming for robotic intra-logistics.

Footnotes

References

Hide All
Abseher, M., Gebser, M., Musliu, N., Schaub, T., and Woltran, S. 2016. Shift design with answer set programming. Fundamenta Informaticae 147, 1, 125.
Alviano, M., Dodaro, C., and Maratea, M. 2017. An advanced answer set programming encoding for nurse scheduling. In Proceedings of the Sixteenth International Conference of the Italian Association for Artificial Intelligence, Esposito, F., Basili, R., Ferilli, S., and Lisi, F., Eds. Lecture Notes in Computer Science, vol. 10640. Springer-Verlag, 468482.
Banbara, M., Inoue, K., Kaufmann, B., Schaub, T., Soh, T., Tamura, N., and Wanko, P. 2016. teaspoon: Solving the curriculum-based course timetabling problems with answer set programming. In Proceedings of the Eleventh International Conference of the Practice and Theory of Automated Timetabling (PATAT'16), Burke, E., Gaspero, L. D., McCollum, B., Schaerf, A., and Özcan, E., Eds. 1332.
Banbara, M., Kaufmann, B., Ostrowski, M., and Schaub, T. 2017. Clingcon: The next generation. Theory and Practice of Logic Programming 17, 4, 408461.
Cholewiński, P., Marek, V., Mikitiuk, A. and Truszczyński, M. 1995. Experimenting with nonmonotonic reasoning. In Proceedings of the International Conference on Logic Programming, Sterling, L., Ed. MIT Press, 267281.
Erdem, E., Kisa, D., Öztok, U., and Schüller, P. 2013. A general formal framework for pathfinding problems with multiple agents. In Proceedings of the Twenty-Seventh National Conference on Artificial Intelligence (AAAI'13), desJardins, M. and Littman, M., Eds. AAAI Press, 290296.
Gebser, M., Jost, H., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T., and Schneider, M. 2013. Ricochet robots: A transverse ASP benchmark. In Proceedings of the Twelfth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'13), Cabalar, P. and Son, T., Eds. Lecture Notes in Artificial Intelligence, vol. 8148. Springer-Verlag, 348360.
Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. 2018. Multi-shot ASP solving with clingo. Theory and Practice of Logic Programming. To appear.
Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., and Wanko, P. 2017. Clingo goes linear constraints over reals and integers. Theory and Practice of Logic Programming 17, 5–6, 872888.
Lifschitz, V. 1999. Answer set planning. In Proceedings of the International Conference on Logic Programming (ICLP'99), de Schreye, D., Ed. MIT Press, 2337.
Ma, H. and Koenig, S. 2016. Optimal target assignment and path finding for teams of agents. In Proceedings of the Fifteenth International Conference on Autonomous Agents and Multiagent Systems (AAMAS'16), Jonker, C., Marsella, S., Thangarajah, J., and Tuyls, K., Eds. ACM Press, 11441152.
Ma, H., Li, J., Kumar, T., and Koenig, S. 2017. Lifelong multi-agent path finding for online pickup and delivery tasks. In Proceedings of the Sixteenth Conference on Autonomous Agents and MultiAgent Systems (AAMAS'17). ACM Press, 837845.
Nguyen, V., Obermeier, P., Son, T., Schaub, T., and Yeoh, W. 2017. Generalized target assignment and path finding using answer set programming. In Proceedings of the Twenty-sixth International Joint Conference on Artificial Intelligence (IJCAI'17), Sierra, C., Ed. IJCAI/AAAI Press, 12161223.
Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., and Barry, M. 2001. An A-prolog decision support system for the space shuttle. In Proceedings of the Third International Symposium on Practical Aspects of Declarative Languages (PADL'01), Ramakrishnan, I., Ed. Lecture Notes in Computer Science, vol. 1990. Springer-Verlag, 169183.
Surynek, P. 2010. An optimization variant of multi-robot path planning is intractable. In Proceedings of the Twenty-fourth National Conference on Artificial Intelligence (AAAI'10), Fox, M. and Poole, D., Eds. AAAI Press, 12611263.
Tamura, N., Taga, A., Kitagawa, S., and Banbara, M. 2009. Compiling finite linear CSP into SAT. Constraints 14, 2, 254272.
Yu, J. and LaValle, S. 2012. Multi-agent path planning and network flow. In Proceedings of the Tenth Workshop on the Algorithmic Foundations of Robotics (WAFR'12), Frazzoli, E., Lozano-Pérez, T., Roy, N., and Rus, D., Eds. Springer Tracts in Advanced Robotics, vol. 86. Springer-Verlag, 157173.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed