Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-sbc4w Total loading time: 0.31 Render date: 2021-03-01T16:09:15.986Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Knowledge compilation of logic programs using approximation fixpoint theory

Published online by Cambridge University Press:  03 September 2015

BART BOGAERTS
Affiliation:
Department of Computer Science, KU Leuven, Belgium (e-mail: bart.bogaerts@cs.kuleuven.be, guy.vandenbroeck@cs.kuleuven.be)
GUY VAN DEN BROECK
Affiliation:
Department of Computer Science, KU Leuven, Belgium (e-mail: bart.bogaerts@cs.kuleuven.be, guy.vandenbroeck@cs.kuleuven.be)

Abstract

Recent advances in knowledge compilation introduced techniques to compile positive logic programs into propositional logic, essentially exploiting the constructive nature of the least fixpoint computation. This approach has several advantages over existing approaches: it maintains logical equivalence, does not require (expensive) loop-breaking preprocessing or the introduction of auxiliary variables, and significantly outperforms existing algorithms. Unfortunately, this technique is limited to negation-free programs. In this paper, we show how to extend it to general logic programs under the well-founded semantics.

We develop our work in approximation fixpoint theory, an algebraical framework that unifies semantics of different logics. As such, our algebraical results are also applicable to autoepistemic logic, default logic and abstract dialectical frameworks.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Abiteboul, S. and Vianu, V. 1991. Datalog extensions for database queries and updates. J. Comput. Syst. Sci. 43, 1, 62124.CrossRefGoogle Scholar
Antic, C., Eiter, T. and Fink, M. 2013. Hex semantics via approximation fixpoint theory. In Proceedings of LPNMR. 102–115.Google Scholar
Asuncion, V., Lin, F., Zhang, Y. and Zhou, Y. 2012. Ordered completion for first-order logic programs on finite structures. Artif. Intell. 177–179, 124.CrossRefGoogle Scholar
Ben-Eliyahu, R. and Dechter, R. 1994. Propositional semantics for disjunctive logic programs. Ann. Math. Artif. Intell. 12, 1–2, 5387.CrossRefGoogle Scholar
Bryant, R. E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers 35, 677691.CrossRefGoogle Scholar
Cadoli, M. and Donini, F. M. 1997. A survey on knowledge compilation. AI Commun. 10, 3–4, 137150.Google Scholar
Chavira, M. and Darwiche, A. 2005. Compiling bayesian networks with local structure. In Proceedings of IJCAI. 1306–1312.Google Scholar
Chavira, M. and Darwiche, A. 2008. On probabilistic inference by weighted model counting. Artif. Intell. 172, 6–7, 772799.CrossRefGoogle Scholar
Darwiche, A. 2011. SDD: A new canonical representation of propositional knowledge bases. In Proceedings of IJCAI. 819–826.Google Scholar
Darwiche, A. and Marquis, P. 2002. A knowledge compilation map. J. Artif. Intell. Res. (JAIR) 17, 229264.Google Scholar
Denecker, M., Lierler, Y., Truszczyński, M. and Vennekens, J. 2012. A Tarskian informal semantics for answer set programming. In ICLP (Technical Communications). 277–289.Google Scholar
Denecker, M., Marek, V. and Truszczyński, M. 2000. Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning. In Logic-Based Artificial Intelligence, Springer. Vol. 597. 127144.CrossRefGoogle Scholar
Denecker, M., Marek, V. and Truszczyński, M. 2004. Ultimate approximation and its application in nonmonotonic knowledge representation systems. Information and Computation 192, 1 (July), 84121.CrossRefGoogle Scholar
Denecker, M. and Vennekens, J. 2007. Well-founded semantics and the algebraic theory of non-monotone inductive definitions. In LPNMR. 84–96.Google Scholar
Denecker, M. and Vennekens, J. 2014. The well-founded semantics is the principle of inductive definition, revisited. In Proceedings of KR. 22–31.Google Scholar
Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D. S., Gutmann, B., Thon, I., Janssens, G. and De Raedt, L. 2015. Inference and learning in probabilistic logic programs using weighted boolean formulas. TPLP 15, 3, 358401.Google Scholar
Fitting, M. 2002. Fixpoint semantics for logic programming –- A survey. Theoretical Computer Science 278, 1–2, 2551.CrossRefGoogle Scholar
Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In Proceedings of ICLP/SLP. 1070–1080.Google Scholar
Huang, J. and Darwiche, A. 2005. On compiling system models for faster and more scalable diagnosis. In Proceedings of AAAI. 300–306.Google Scholar
Janhunen, T. 2004. Representing normal programs with clauses. In Proceedings of ECAI. 358–362.Google Scholar
Janhunen, T. 2006. Some (in)translatability results for normal logic programs and propositional theories. Journal of Applied Non-Classical Logics 16, 1–2, 3586.CrossRefGoogle Scholar
Janhunen, T., Niemelä, I. and Sevalnev, M. 2009. Computing stable models via reductions to difference logic. In LPNMR, Erdem, E., Lin, F., and Schaub, T., Eds. LNCS, vol. 5753. Springer, 142154.Google Scholar
Kleene, S. C. 1938. On notation for ordinal numbers. The Journal of Symbolic Logic 3, 4, 150155.CrossRefGoogle Scholar
Lifschitz, V. and Razborov, A. A. 2006. Why are there so many loop formulas? ACM Trans. Comput. Log. 7, 2, 261268.CrossRefGoogle Scholar
Lin, F. and Zhao, J. 2003. On tight logic programs and yet another translation from normal logic programs to propositional logic. In Proceedings of IJCAI. 853–858.Google Scholar
Lin, F. and Zhao, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT solvers. AIJ 157, 1–2, 115137.Google Scholar
Lowd, D. and Domingos, P. 2008. Learning arithmetic circuits. In Proceedings of UAI. 383–392.Google Scholar
Marek, V. and Truszczyński, M. 1999. Stable models and an alternative logic programming paradigm. In The Logic Programming Paradigm: A 25-Year Perspective. Springer-Verlag, 375398.CrossRefGoogle Scholar
Palacios, H., Bonet, B., Darwiche, A. and Geffner, H. 2005. Pruning conformant plans by counting models on compiled d-dnnf representations. In Proceedings of ICAPS. 141–150.Google Scholar
Pelov, N., Denecker, M. and Bruynooghe, M. 2007. Well-founded and stable semantics of logic programs with aggregates. TPLP 7, 3, 301353.Google Scholar
Przymusinski, T. C. 1988. On the declarative semantics of deductive databases and logic programs. In Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann, 193216.CrossRefGoogle Scholar
Selman, B. and Kautz, H. A. 1996. Knowledge compilation and theory approximation. J. ACM 43, 2, 193224.CrossRefGoogle Scholar
Strass, H. 2013. Approximating operators and semantics for abstract dialectical frameworks. AIJ 205, 3970.Google Scholar
Suciu, D., Olteanu, D., , C. and Koch, C. 2011. Probabilistic databases.Google Scholar
Van den Broeck, G. and Darwiche, A. 2015. On the role of canonicity in knowledge compilation. In Proceedings of AAAI.Google Scholar
van Emden, M. H. and Kowalski, R. A. 1976. The semantics of predicate logic as a programming language. J. ACM 23, 4, 733742.CrossRefGoogle Scholar
Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The well-founded semantics for general logic programs. J. ACM 38, 3, 620650.CrossRefGoogle Scholar
Vlasselaer, J., Van den Broeck, G., Kimmig, A., Meert, W. and De Raedt, L. 2015. Anytime inference in probabilistic logic programs with -compilation. In Proceedings of IJCAI. Available on https://lirias.kuleuven.be/handle/123456789/494681.Google Scholar

Bogaerts supplementary material

Online Appendix

PDF 344 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 32 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 1st March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Knowledge compilation of logic programs using approximation fixpoint theory
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Knowledge compilation of logic programs using approximation fixpoint theory
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Knowledge compilation of logic programs using approximation fixpoint theory
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *