Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T13:52:38.384Z Has data issue: false hasContentIssue false

Viewing Paleobiology Through the Lens of Phylogeny

Published online by Cambridge University Press:  21 July 2017

Colin D. Sumrall
Affiliation:
Department of Earth and Planetary Sciences, University of Tennessee Knoxville, TN 37996
Christopher A. Brochu
Affiliation:
Department of Geoscience, University of Iowa Iowa City, IA 52242
Get access

Abstract

Phylogenetic systematics is the dominant form of taxonomy for most biologists, vertebrate paleontologists and to a lesser degree invertebrate paleontologists. Taxonomies are based strictly on evolutionary relationships with traits of organisms such as morphology and sequence data, being used as evidence for relationships. Two types of taxa are recognized - species that may be monophyletic or paraphyletic and clades that must be monophyletic. The phylogeny is an hypothesis of relationships that can be used to illuminate many areas of paleobiology including: unsampled morphology from incompletely preserved organisms, temporal distribution of taxa, and evolutionary patterns and mechanisms. Consequently, an understanding of phylogenetic assumptions, experimental design, and language are critical for the incorporation of phylogenetic taxonomies into larger studies of paleobiology.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrain, J. M., and Westrop, S. R. 2001. Stratigraphy, phylogeny, and species sampling in time and space. In Adrain, J. M., Edgecombe, G. D., and Lieberman, B. S. (eds.), Fossils, Phylogeny, and Form: An Analytical Approach. Kluwer Academic, New York.CrossRefGoogle Scholar
Adrain, J. M., and Westrop, S. R. 2003. Paleobiodiversity: we need new data. Paleobiology, 29:2225.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J. 1999. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Systematic Biology, 48:107118.Google Scholar
Alroy, J. 2000. Successive approximations of diversity curves: Ten more years in the library. Geology, 28:10231026.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J. 2003. Taxonomic inflation and body mass distributions in North American fossil mammals. Journal of Mammalogy, 84:431443.Google Scholar
Antunes, M. T. 1994. On western Europe Miocene gavials (Crocodylia), their paleogeography, migrations and climatic significance. Comunicações Institute Geologico e Mineiro, 80:5769.Google Scholar
Antunes, M. T., and Cahuzac, B. 1999. Crocodilian faunal renewal in the Upper Oligocene of western Europe. Comptes Rendus de l'Academie des Sciences de Paris, Sciences de la Terre et des Planétes, 328:6773.Google Scholar
Archibald, J. D. 1993. The importance of phylogenetic analysis for the assessment of species turnover: a case history of Paleocene mammals in North America. Paleobiology, 19:127.CrossRefGoogle Scholar
Archibald, J. D. 1994. Metataxon concepts and assessing possible ancestry using phylogenetic systematics. Systematic Biology, 43:2740.Google Scholar
Arndt, P. F. 2007. Reconstruction of ancestral nucleotide sequences and estimation of substitution frequencies in a star phylogeny. Gene, 390:7583.Google Scholar
Ausich, W. I., and Peters, S. E. 2005. A revised macroevolutionary history for Ordovician-Early Silurian crinoids. Paleobiology, 31:538551.Google Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30:522542.Google Scholar
Bell, B. M. 1976. Phylogenetic implications of ontogenetic development in the class Edrioasteroidea (Echinodermata). Journal of Paleontology 50:10011019.Google Scholar
Benton, M. J. 1995. Late Triassic to Middle Jurassic extinctions among continental tetrapods: testing the pattern., p. 366397. In Fraser, N. C. and Sues, H. D. (eds.), In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods. Cambridge University Press, New York.Google Scholar
Benton, M. J. 2000. Stems, nodes, crown-clades, and rank-free lists: is Linnaeus dead? Biological Reviews, 75:633648.CrossRefGoogle ScholarPubMed
Benton, M. J., and Storrs, G. W. 1996. Diversity in the past: comparing cladistic phylogenies and stratigraphy, p. 1940. In Hochberg, M. E. and Barbault, R. (eds.), Aspects of the Genesis and Maintainance of Biological Diversity. Oxford University Press, New York.Google Scholar
Berg, D. E. 1964. Krokodile als Klimazeugen. Geologischen Rundschau, 54:328333.Google Scholar
Bodenbender, B. E., and Fisher, D. C. 2001. Stratocladistic analysis of blastoid phylogeny. Journal of Paleontology, 75(2):351369.2.0.CO;2>CrossRefGoogle Scholar
Böhme, M. 2003. The Miocene Climatic Optimum: evidence from ectothermic vertebrates of central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195:389401.CrossRefGoogle Scholar
Brochu, C. A. 1997. Morphology, fossils, divergence timing, and the phylogenetic relationships of Gavialis . Systematic Biology, 46:479522.CrossRefGoogle ScholarPubMed
Brochu, C. A. 1999. Phylogeny, systematics, and historical biogeography of Alligatoroidea. Society of Vertebrate Paleontology Memoir, 6:9100.Google Scholar
Brochu, C. A. 2000. Phylogenetic relationships and divergence timing of Crocodylus based on morphology and the fossil record. Copeia, 2000:657673.Google Scholar
Brochu, C. A. 2003. Phylogenetic approaches toward crocodylian history. Annual Review of Earth and Planetary Sciences, 31:357397.Google Scholar
Brochu, C. A. 2004. Alligatorine phylogeny and the status of Allognathosuchus Mook, 1921. Journal of Vertebrate Paleontology, 24:856872.Google Scholar
Brochu, C. A. 2006. Osteology and phylogenetic significance of Eosuchus minor (Marsh 1870), new combination, a longirostrine crocodylian from the Late Paleocene of North America. Journal of Paleontology, 80:162186.CrossRefGoogle Scholar
Brochu, C. A., and Norell, M. 2001. Time and trees: A quantitative assessment of temporal congruence in the bird origins debate, p. 511535. In Gauthier, J. and Gall, L. F. (eds.), New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom. Peabody Museum of Natural History, Yale University, New Haven.Google Scholar
Brochu, C. A., and Sumrall, C. D. 2001. Phylogenetic nomenclature and paleontology. Journal of Paleontology, 75:754757.Google Scholar
Brochu, C. A., and Sumrall, C. D. 2008. Phylogenetics and the integration of paleontology within the life sciences, p. 198206. In Kelley, P. H. and Bambach, R. K. (eds.), From Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century, Paleontological Society Short Course, Volume 14.Google Scholar
Bryant, H. N., and Cantino, P. D. 2002. A review of criticisms of phylogenetic nomenclature: is taxonomic freedom the fundamental issue? Biological Reviews, 77:3955.CrossRefGoogle ScholarPubMed
Buffetaut, E. 1980. Détermination de la nature des événements de la transition Crétacé-Tertiare: la contribution de l'étude des crocodiliens. Mémoires de la Societé Geologique de France, 139:4752.Google Scholar
Buffetaut, E. 1990. Vertebrate extinctions and survival across the Cretaceous-Tertiary boundary. Tectonophysics, 171:337345.Google Scholar
Buscalioni, A. D., Ortega, F., Weishampel, D. B., and Jianu, C. M. 2001. A revision of the crocodyliform Allodaposuchus precedens from the Upper Cretaceous of the Hateg Basin, Romania. Its relevance in the phylogeny of Eusuchia. Journal of Vertebrate Paleontology, 21:7486.Google Scholar
Cantino, P. D., Bryant, H. N., Queiroz, K. D., Donoghue, M. J., Eriksson, T., Hillis, D. M., and Lee, M. S. Y. 1999. Species names in phylogenetic nomenclature. Systematic Biology, 48:790807.Google Scholar
Cavin, L., and Forey, P. L. 2007. Using ghost lineages to identify diversification events in the fossil record. Biology Letters, 3:201204.Google Scholar
Clarke, J., and Middleton, K. M. 2008. Mosaicism, modules, and the evolution of birds: results from a Bayesian approach to the study of morphological evolution using discrete character data. Systematic Biology, 57:185201.Google Scholar
Cooper, G. A. 1958. Presidential address - the science of paleontology. Journal of Paleontology, 32: 10101018.Google Scholar
Cracraft, J. 1983. Species concepts and speciation analysis. Current Ornithology, 1:159187.Google Scholar
Culver, S. J., Buzas, M. A., and Collins, L. S. 1987. On the value of taxonomic standardization in evolutionary studies. Paleobiology, 13:169176.Google Scholar
De Queiroz, K. 1999. The general lineage concept of species and the defining properties of the species category, p. 4989. In Wilson, R. A. (ed.), Species. MIT Press, Cambridge.CrossRefGoogle Scholar
De Queiroz, K., 2006. The PhyloCode and the distinction between taxonomy and nomenclature. Systematic Biology 55:160162.Google Scholar
De Quieroz, K., and Gauthier, J. 1990. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology, 39:307322.Google Scholar
Delfino, M., Codrea, V., Folie, A., Dica, P., Godefroit, P., and Smith, T. 2008. A complete skull of Allodaposuchus precedens Nopcsa 1928 (Eusuchia) and a reassessment of the morphology of the taxon based on the Romanian remains. Journal of Vertebrate Paleontology, 28:111122.Google Scholar
Delfino, M., Piras, P., and Smith, T. 2005. Anatomy and phylogeny of the gavialoid Eosuchus lerichei from the Paleocene of Europe. Acta Palaeontologica Polonica, 50:565580.Google Scholar
Fara, E. 2000. Diversity of Callovian-Ypresian (Middle Jurassic-Eocene) tetrapod families and selectivity of extinctions at the K/T boundary. Geobios, 33:387396.Google Scholar
Feldmann, R. M., and Manning, R. B. 1992. Crisis in systematic biology in the “Age of Biodiversity”. Journal of Paleontology, 66:157158.Google Scholar
Felsenstein, J. 2003. Inferring Phylogenies. Sinauer Associates, Sunderland, MA, 580 p.Google Scholar
Flessa, K. W., and Jablonski, D. 1983. Extinction is here to stay. Paleobiology, 9:315321.Google Scholar
Foote, M. 1996. Evolutionary patterns in the fossil record. Evolution, 50:111.Google Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology, 31:620.2.0.CO;2>CrossRefGoogle Scholar
Forey, P. L., Fortey, R., Kenrick, P., and Smith, A. B. 2004. Taxonomy and fossils: a critical appraisal. Philosophical Transactions of the Royal Society of London B, 359:639653.Google Scholar
Friedman, M. 2007. The interrelationships of Devonian lungfishes (Sarcopterygii: Dipnoi) as inferred from neurocranial evidence and new data from the genus Soederberghia Lehman, 1959. Zoological Journal of the Linnean Society, 151:115171.Google Scholar
Gatesy, J., Amato, G., Norell, M., Desalle, R., and Hayashi, C. 2003. Combined support for wholesale taxic atavism in gavialine crocodylians. Systematic Biology, 52:403422.CrossRefGoogle ScholarPubMed
Geisler, J. H., Sanders, A. E., and Luo, Z. 2005. A new protocetid whale (Cetacea, Archaeoceti) from the late Middle Eocene of South Carolina. American Museum Novitates 3480:165.Google Scholar
Gould, S. J. 1977. Ontogeny and phylogeny. Harvard University Press, Cambridge, 501 p.Google Scholar
Hennig, W. 1966. Phylogenetic Systematics. University of Illinois Press, Springfield, 263 p.Google Scholar
Hillenius, W. J. 1994. Turbinates in therapsids: evidence for Late Permian origins of mammalian endothermy. Evolution, 48(207229).Google Scholar
Holtz, T. R. 2000. A new phylogeny of the carnivorous dinosaurs. Gaia, 15:561.Google Scholar
Hua, S., Buffetaut, E., Legall, C., and Rogron, P. 2007. Oceanosuchus boecensis n. gen. n. sp., un pholidosauridé marin (Croodylia, Mesosuchia) du Cénomanien inférieur de Normandie. Bulletin de la Societe Géologique de France, 178:503513.Google Scholar
Hutchison, J. H. 1982. Turtle, crocodilian, and champsosaur diversity changes in the Cenozoic of the north-central region of western United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 37:149164.Google Scholar
Hutchison, J. H. 1992. Western North American reptile and amphibian record across the Eocene-Oligocene boundary and its climatic implications, p. 451463. In Prothero, D. R. and Berggren, W. A. (eds.), Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton.CrossRefGoogle Scholar
Hutt, S., Naish, D., Martill, D. M., Barker, M. J., and Newbery, P. 2001. A preliminary account of a new tyrannosauroid theropod from the Wessex Formation (Early Cretaceous) of southern England. Cretaceous Research, 22:227242.Google Scholar
Hwang, S. H., Norell, M. A., Ji, Q., and Gao, K. 2002. New specimens of Microraptor zhaoianus (Theropoda: Dromaeosauridae) from northeastern China. American Museum Novitates, 3381:144.Google Scholar
Ji, Q., Luo, Z., Yuan, C., and Tabrum, A. R. 2006. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science, 311:11231127.Google Scholar
Keller, R. A., Boyd, R. N., and Wheeler, Q. D. 2003. The illogical basis of phylogenetic nomenclature. Botanical Review, 69:93110.Google Scholar
Kemp, T. S. 2006. The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure. Zoological Journal of the Linnean Society, 147:473488.CrossRefGoogle Scholar
Kesling, R. V. 1968. Cystoids, p. S85S267. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 1(1). Geological Society of America and University of Kansas, New York and Lawrence, Kansas.Google Scholar
Lambe, L. M. 1914. On the fore-limb of a carnivorous dinosaur from the Belly River Formation of Alberta, and a new genus of Ceratopsia from the same horizon, with remarks on the integument of some Cretaceous herbivorous dinosaurs. The Ottawa Naturalist, 27:1320.Google Scholar
Lane, A., Janis, C. M., and Sepkoski, J. J. 2005. Estimating paleodiversities: a test of the taxic and phylogenetic methods. Paleobiology, 31:2134.Google Scholar
Luo, Z., Kielan-Jawarowska, Z. and Cifelli, R. L. 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47:178.Google Scholar
Markwick, P. J. 1994. “Equability,” continentality, and Tertiary “climate:” the crocodilian perspective. Geology, 22:613616.Google Scholar
Markwick, P. J. 1998a. Crocodilian diversity in space and time: the role of climate in paleoecology and its implication for understanding K/T extinctions. Paleobiology, 24:470497.CrossRefGoogle Scholar
Markwick, P. J. 1998b. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 137:205271.Google Scholar
Martin, J. E. 2007. New material of the Late Cretaceous globidontan Acynodon iberoccitanus (Crocodylia) from southern France. Journal of Vertebrate Paleontology, 27:362372.Google Scholar
Mayr, E. 1942. Systematics and the Origin of Species. Columbia University Press, New York, 334 p.Google Scholar
McGowan, A. J., and Smith, A. B. 2007. Ammonoids across the Permian/Triassic Boundary: a cladistic perspective. Palaeontology, 50:573590.Google Scholar
Meng, J., and Wyss, A. R. 1997. Multituberculate and other mammal hair recovered from Palaeogene excreta. Nature, 385:712714.Google Scholar
Miller, A. I. 1997. Dissecting global diversity patterns: examples from the Ordovician Radiation. Annual Review of Ecology and Systematics, 28:85104.Google Scholar
Miller, A. I. 2003. On the importance of global diversity trends and the viability of existing paleontological data. Paleobiology, 29:1518.Google Scholar
Mishler, B. D. 1999. Getting rid of species?, p. 307315. In Wilson, R. A. (ed.), Species: New Interdisciplinary Essays. MIT Press, Cambridge.Google Scholar
Monsch, K. A. 2006. The PhyloCode, or alternative nomenclature: why it is not beneficial to palaeontology, either. Acta Palaeontologica Polonica, 51:521524.Google Scholar
Müller, J., and Reisz, R. R. 2006. The phylogeny of early eureptiles: comparing parsimony and Bayesian approaches in the investigation of a basal fossil clade. Systematic Biology 55:503511.Google Scholar
Norell, M., Ji, Q., Gao, K., Yuan, C., Zhao, Y., and Wang, L. 2002. ‘Modern’ feathers in a nonavian dinosaur. Nature, 416:3637.Google Scholar
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny, p. 89118. In Novacek, M. J. and Wheeler, Q. D. (eds.), Extinction and Phylogeny. Columbia University Press, New York.Google Scholar
Norell, M. A., and Novacek, M. J. 1992. The fossil record and evolution: comparing cladistic and paleontologic evidence for vertebrate history. Science, 255:16901693.Google Scholar
Norell, M. A., and Xu, X. 2005. Feathered dinosaurs. Annual Review of Earth and Planetary Sciences, 33:277299.Google Scholar
Osborn, H. F. 1917. Skeletal adaptations of Ornitholestes, Struthiomimus, Tyrannosaurus . Bulletin of the American Museum of Natural History, 35:733771.Google Scholar
Owen, R. 1842. Report on British fossil reptiles. Report of the British Association for the Advancement of Science 11:60204.Google Scholar
Padian, K., and Horner, J. R. 2002. Typology versus transformation in the origin of birds. Trends in Ecology and Evolution, 17:120124.Google Scholar
Pagel, M., Meade, A., and Barker, D. S. 2004. Bayesian estimation of ancestral character states on phylogenies. Systematic Biology, 53:673684.CrossRefGoogle ScholarPubMed
Patterson, C., and Smith, A. B. 1987. Is periodicity of mass extinctions a taxonomic artifact? Nature, 330:248251.Google Scholar
Patterson, C., and Smith, A. B. 1988. Periodicity in extinction: the role of systematics. Ecology, 70:802811.CrossRefGoogle Scholar
Peters, S. E. 2004. Relative abundance of Sepkoski's evolutionary faunas in Cambrian-Ordovician deep subtidal environments in North America. Paleobiology, 30:543560.Google Scholar
Phillips, J. 1860. Life On the Earth: Its Origin and Succession. Oxford University Press, London, 224 p.Google Scholar
Piras, P., Delfino, M., Del Favero, L., and Kotsakis, T. 2007. Phylogenetic position of the crocodylian Megadontosuchus arduini and tomistomine palaeobiogeography. Acta Palaeontologica Polonica, 52:315328.Google Scholar
Platnick, N. I. 1977. Cladograms, phylogenetic trees, and hypothesis testing. Systematic Zoology, 26:438442.Google Scholar
Pleijel, F. 1999. Phylogenetic taxonomy, a farewell to species, and a revision of Heteropodarke (Hesionidae, Polychaeta, Annelida). Systematic Biology, 48:755789.Google Scholar
Rauhut, O. W. M. 2003. A tyrannosauroid dinosaur from the Upper Jurassic of Portugal. Palaeontology, 46:903910.Google Scholar
Raup, D. M., and Sepkoski, J. J. 1982. Mass extinctions in the marine fossil record. Science, 215:15011503.Google Scholar
Ray, S., Botha, J., and Chinsamy, A. 2004. Bone histology and growth patterns of some non-mammalian therapsids. Journal of Vertebrate Paleontology, 24:634648.Google Scholar
Rieppel, O. 2006. The PhyloCode: a critical discussion of its theoretical foundation. Cladistics, 22:186197.Google Scholar
Robeck, H. E., Maley, C. C., and Donoghue, M. J. 2000. Taxonomy and temporal diversity patterns. Paleobiology, 26:171187.Google Scholar
Rowe, T. 1988. Definition, diagnosis, and origin of Mammalia. Journal of Vertebrate Paleontology, 8:241264.Google Scholar
Roy, K. 1996. The roles of mass extinction and biotic interaction in large-scale replacements: a reexamination using the fossil record of stromboidean gastropods. Paleobiology, 22:436452.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 1996. Higher taxa in biodiversity studies: patterns from eastern Pacific marine molluscs. Philosophical Transactions of the Royal Society of London, 351:16051613.Google Scholar
Russell, A. P., and Wu, X.-C. 1997. The Crocodylomorpha at and between geological boundaries: the Baden-Powell approach to change? Zoology, 100:164198.Google Scholar
Salisbury, S. W., and Willis, P. M. A. 1996. A new crocodylian from the Early Eocene of southeastern Queensland and a preliminary investigation of the phylogenetic relationships of crocodyloids. Alcheringa, 20:179227.Google Scholar
Sepkoski, J. J. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology, 4:223251.Google Scholar
Sepkoski, J. J. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology, 10:246267.CrossRefGoogle Scholar
Sepkoski, J. J. 1993. Ten years in the library: New data confirm paleontological patterns. Paleobiology, 19:4351.Google Scholar
Sepkoski, J. J., and Kendrick, D. C. 1993. Numerical experiments with model monophyletic and paraphyletic taxa. Paleobiology, 19:168184.Google Scholar
Sereno, P. C. 1999. The evolution of dinosaurs. Science, 284:21372147.Google Scholar
Sereno, P. C. 2005. The logical basis of phylogenetic taxonomy. Systematic Biology, 54:595619.Google Scholar
Sidor, C. A. 2003. Evolutionary trends and the origin of the mammalian lower jaw. Paleobiology, 29:605640.Google Scholar
Sidor, C. A., and Hopson, J. A. 1998. Ghost lineages and “mammalness:” assessing the temporal pattern of character acquisition in the Synapsida. Paleobiology, 24:254273.Google Scholar
Signor, P. W. 1990. The geologic history of diversity. Annual Review of Ecology and Systematics, 21:509539.Google Scholar
Smith, A. B. 1991. Systematics and the Fossil Record. Wiley-Blackwell, New York, 232 p.Google Scholar
Smith, A. B., and Jeffery, C. H. 2000. Maastrichtian and Palaeocene echinoids: a key to world faunas. Special Papers in Palaeontology, 63:1406.Google Scholar
Snively, E., and Cox, A. 2008. Structural mechanics of pachycephalosaur crania permitted head-butting behavior. Palaeontologia Electronica, 11:317.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Harvard University Museum of Comparative Zoology, Special Publication, 283 p.Google Scholar
Sprinkle, J and Bell, B. M. 1978. Paedomorphism in edrioasteroid echinoderms. Paleobiology, 4:8288.Google Scholar
Sumrall, C. D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata, p. 267288. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, v. 3.Google Scholar
Sumrall, C. D. 2001. Paleoecology of two new edrioasteroids from a Mississippian hardground in Kentucky. Journal of Paleontology, 75:136146.Google Scholar
Sumrall, C. D., and Carlson, D. T. 2000. Suture modification by pectinirhomb growth in Lepadocystis decorus, a new species of callocystitid glyptocystitid rhombiferan (Echinodermata) from Illinois. Journal of Paleontology, 74:487491.Google Scholar
Sumrall, C. D. and Gahn, F. J. 2006. Morphological and systematic reinterpretation of two enigmatic edrioasteroids (Echinodermata) from Canada. Canadian Journal of Earth Science, 43:497507.Google Scholar
Sumrall, C. D., and Schumacher, G. A. 2002. Cheirocystis fultonensis, a new glyptocystitid rhombiferan from the Upper Ordovician of the Cincinnati Arch. Journal of Paleontology, 76:843851.Google Scholar
Sumrall, C. D., Sprinkle, J., and Guensburg, T. A. 1997. Systematics and Paleoecology of Late Cambrian echinoderms from the western United States. Journal of Paleontology, 71:10911109.Google Scholar
Taplin, L. E. 1984. Evolution and zoogeography of crocodilians: a new look at an ancient order. Pp. 361370 in Archer, M. and Clayton, G. (eds), Vertebrate Zoogeography and Evolution in Australasia, Hesperian Press, Victoria Park, Western Australia.Google Scholar
Turner, A. 2007. A small derived theropod from Öösh, Early Cretaceous, Baykhangor Mongolia. American Museum Novitates, 3557:127.Google Scholar
Valentine, J. W. 1969. Patterns of taxonimic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology, 12:684709.Google Scholar
Vasse, D., and Hua, S. 1998. Diversité des crocodiliens du Crétacé Supérieur et du Paléogène. Influneces et limites de la crise Maastrichtien-Paléocène et des “Terminal Eocene Events”. Oryctos, 1:6577.Google Scholar
Wagner, P. J. 1995. Stratigraphic tests of cladistic hypotheses. Paleobiology, 21:153178.Google Scholar
Wagner, P. J. 1998. A likelihood approach for estimating phylogenetic relationships among fossil taxa. Paleobiology, 24:430449.Google Scholar
Wagner, P. J. 2000. The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Systematic Biology, 49:6586.CrossRefGoogle ScholarPubMed
Westrop, S. R., and Adrain, J. M. 1998. Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology, 24:116.Google Scholar
Wheeler, Q. D. 2004. Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society of London B, 359:571583.Google Scholar
Wiley, E. O. 1981. Phylogenetics: The Theory and Practice of Phylogenetic Systematics. John Wiley and Sons, New York.Google Scholar
Willis, P. M. A. 1993. Trilophosuchus rackhami gen et sp. nov., a new crocodilian from the early Miocene limestones of Riversleigh, northwestern Queensland. Journal of Vertebrate Paleontology, 13:9098.Google Scholar
Willis, P. M. A., Molnar, R. E., and Scanlon, J. D. 1993. An early Eocene crocodilian from Murgon, southeastern Queensland. Kaupia, 3:2733.Google Scholar
Witmer, L. M. 1995. The Extant Phylogenetic Bracket and the importance of reconstructing soft tissues in fossils, p. 1933. In Thomason, J. J. (ed.), Functional Morphology in Vertebrate Paleontology. Cambridge University Press, New York.Google Scholar
Xu, X., Clark, J. M., Forster, C. A., Norell, M. A., Erickson, G. M., Eberth, D. A., Jia, C., and Zhao, Q. 2006. A basal tyrannosauroid dinosaur from the Late Jurassic of China. Nature, 439:715718.Google Scholar
Xu, X., Norell, M. A., Kuang, X., Wang, X., Zhao, Q., and Jia, C. 2004. Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids. Nature, 431:680684.Google Scholar
Xu, X., Zhou, Z., Kuang, X., Zhang, F., and Du, X. 2003. Four-winged dinosaurs from China. Nature, 421:335340.Google Scholar