Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T20:46:24.454Z Has data issue: false hasContentIssue false

Tackling the 99%: Can We Begin to Understand the Paleoecology of the Small and Soft-Bodied Animal Majority?

Published online by Cambridge University Press:  21 July 2017

Erik A. Sperling*
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA
Get access

Abstract

Not all organisms have an equal chance of entering the fossil record. Previo—us attempts to quantify this percentage suggest that for megascopic marine organisms (megafauna), ∼30% would be predicted to leave no identifiable fossils. Here, that exercise is repeated for marine macrofauna, for which ∼80% are predicted to leave no identifiable fossils. The percentage will be far higher for meiofauna, the numerically most dominant marine animals. The organisms which are often most abundant in marine sediments, such as small polychaetes and nematodes, have essentially no fossil record. Yet such organisms are ecologically important in the modern oceans, and almost certainly were in ancient environments as well, so it is useful to consider the roles they play in different ecosystems. Insight into the evolution and paleoecology of these groups can be gained by using molecular divergence estimates to infer temporal origins combined with modern distributional and ecological data. As a case study, this approach is applied to the small and soft-bodied early animal fauna living under low levels of atmospheric oxygen that likely characterized the Precambrian.

Type
Research Article
Copyright
Copyright © 2013 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ager, D. V. 1973. The Nature of the Stratigraphical Record. John Wiley and Sons, New York.Google Scholar
Alexander, R. M. N. 1971. Size and Shape. Edward Arnold, London.Google Scholar
Aller, R. C. 1980. Quantifying solute distributions on the bioturbated zone of marine sediments by defining an average microenvironment. Geochimica et Cosmochimica Acta, 44:19551965.CrossRefGoogle Scholar
Aller, R. C. 1994. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology, 114:331345.Google Scholar
Aller, R. C., and Aller, J. Y. 1992. Meiofauna and solute transport in marine muds. Limnology and Oceanography, 37:10181033.Google Scholar
Aller, R. C., and Yingst, J. Y. 1985. Effects of the marine deposit-feeders Heteromastus filiformis (Polychaeta), Macoma balthica (Bivalvia), and Tellina texana (Bivalvia) on averaged sedimentary solute transport, reaction rates, and microbial distributions. Journal of Marine Research, 43:615645.CrossRefGoogle Scholar
Anderson, B. M., Pisani, D., Miller, A. I., and Peterson, K. J. 2011. The environmental affinities of marine higher taxa and possible biases in their first appearances in the fossil record. Geology, 39:971974.CrossRefGoogle Scholar
Bottjer, D. J., Etter, W., Hagadorn, J. W., and Tang, C. M. 2001. Exceptional Fossil Preservation. Columbia University Press, New York.Google Scholar
Briggs, D. E. G. 1991. Extraordinary fossils. American Scientist, 79:130141.Google Scholar
Briggs, D. E. G., Erwin, D., and Collier, F. J. 1994. Fossils of the Burgess Shale. Smithsonian Institution Press, Washington, D. C. Google Scholar
Bromham, L. 2003. What can DNA tell us about the Cambrian Explosion? Integrative and Comparative Biology, 43:148156.Google Scholar
Brusca, R. C., and Brusca, G. J. 2003. Invertebrates. Sinauer Associates, Sunderland, MA.Google Scholar
Budd, G. E., and Jensen, S. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75:253295.Google Scholar
Canfield, D. E. 2005. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33:136.Google Scholar
Carlson, S. J. 1995. Phylogenetic relationships among extant brachiopods. Cladistics, 11:131197.Google Scholar
Cloud, P. E. Jr., 1968. Atmospheric and hydrospheric evolution on the primitive Earth. Science, 160:729736.Google Scholar
Conway Morris, S., and Whittington, H. B. 1985. Fossils of the Burgess Shale. A national treasure in Yoho National Park, British Columbia. Geological Survey of Canada Miscellaneous Reports, 43:131.Google Scholar
Drummond, A., and Rambaut, A. J. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7:214.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334:10911097.Google Scholar
Fedonkin, M. A., and Waggoner, B. M. 1997. The Late Precambrian fossil Kimberella is a mollusclike bilaterian organism. Nature, 388:868871.Google Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society, 57:1333.Google Scholar
Gallardo, V. A., Palma, M., Carrasco, F. D., Gutierrez, D., Levin, L. A., and Canete, J. I. 2004. Macrobenthic zonation caused by the oxygen minimum zone on the shelf and slope off central Chile. Deep Sea Research II, 51:24752490.Google Scholar
Gooday, A. J., Bett, B. J., Escobar, E., Ingole, B., Levin, L. A., Neira, C., Raman, A. V., and Sellanes, J. 2010. Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Marine Ecology, 31:125147.Google Scholar
Gooday, A. J., Levin, L. A., Da Silva, A. A., Bett, B. J., Cowie, G. L., Dissard, D., Gage, J. D., Hughes, D. J., Jeffreys, R., Lamont, P. A., Larkin, K. E., Murty, S. J., Schumacher, S., Whitcraft, C., and Woulds, C. 2009. Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Research II, 56:488502.Google Scholar
Gould, S. J. 2002. The Structure of Evolutionary Theory. Belknap Press, Cambridge.Google Scholar
Graur, D., and Martin, W. 2004. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics, 20:8086.Google Scholar
Green, A. S., and Chandler, G. T. 1994. Meiofaunal bioturbation effects on the partitioning of sediment-associated cadmium. Journal of Experimental Marine Biology and Ecology, 180:5970.CrossRefGoogle Scholar
Hints, O., and Eriksson, M. E. 2007. Diversification and biogeography of scolecodont-bearing polychaetes in the Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 95114.Google Scholar
Holmer, L. E., Popov, L. E., Bassett, M. G., and Laurie, J. 1995. Phylogenetic analysis and ordinal classification of the Brachiopoda. Palaeontology, 38:713741.Google Scholar
Hunt, G., and Roy, K. 2006. Climate change, body size evolution, and Cope's Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences USA, 103:13471352.Google Scholar
Ingole, B. S., Sautya, S., Sivadas, S., Singh, R., and Nanajkar, M. 2010. Macrofaunal community structure in the western Indian continental margin including the oxygen minimum zone. Marine Ecology, 31:148166.Google Scholar
Jeffreys, R. M., Levin, L. A., Lamont, P. A., Woulds, C., Whitcraft, C. R., Mendoza, G. F., Wolff, G. A., and Cowie, G. L. 2012. Living on the edge: single-species dominance at the Pakistan oxygen minimum zone boundary. Marine Ecology Progress Series, 470:7999.Google Scholar
Knoll, A. H., and Carroll, S. B. 1999. Early animal evolution: Emerging views from comparative biology and geology. Science, 284:21292137.CrossRefGoogle ScholarPubMed
Kump, L. R. 2008. The rise of atmospheric oxygen. Nature, 451:277278.CrossRefGoogle ScholarPubMed
Lamont, P. A., and Gage, J. D. 2000. Morphological responses of macrobenthic polychaetes to low oxygen on the Oman continental slope, NW Arabian Sea. Deep-Sea Research II, 47:924.Google Scholar
Lartillot, N., Lepage, T., and Blanquart, S. 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics, 25:22862288.CrossRefGoogle ScholarPubMed
Lartillot, N., and Philippe, H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution, 21:10951109.CrossRefGoogle ScholarPubMed
Lepage, T., Bryant, D., Philippe, H., and Lartillot, N. 2007. A general comparison of relaxed molecular clock models. Molecular Biology and Evolution, 24:26692680.CrossRefGoogle ScholarPubMed
Levin, L. A. 2003. Oxygen Minimum Zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology: Annual Review, 41:145.Google Scholar
Levin, L., Blair, N., Demaster, D., Plaia, G., Fornes, W., Martin, C., and Thomas, C. 1997. Rapid subduction of organic matter by maldanid polychaetes on the North Carolina slope. Journal of Marine Research, 55:595611.Google Scholar
Levin, L. A., and Gage, J. D. 1998. Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep-Sea Research Part II, 45:129163.Google Scholar
Levin, L. A., Mendoza, G. F., Gonzalez, J. P., Thurber, A. R., and Cordes, E. E. 2010. Diversity of bathyal macrofauna on the northeastern Pacific margin: the influence of methane seeps and oxygen minimum zones. Marine Ecology, 31:94110.Google Scholar
Love, G. D., Grosjean, E., Stalvies, C., Fike, D. A., Grotzinger, J. P., Bradley, A. S., Kelly, A. E., Bhatia, M., Meredith, W., Snape, C. E., Bowring, S. A., Condon, D. J., and Summons, R. E. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457:718721.Google Scholar
Maloof, A. C., Porter, S. M., Moore, J. L., Dudas, F. O., Bowring, S. A., Higgins, J. A., Fike, D. A., and Eddy, M. P. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin, 122:17311774.Google Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: Implications for metazoan evolution. Science, 288:841845.Google Scholar
Marshall, C. R. 1995. Stratigraphy, the true order of species originations and extinctions, and testing ancestor-descendent hypotheses among Caribbean Neogene bryozoans, p. 208235. In Erwin, D. H. and Anstey, R. L. (eds.), New Approaches to Speciation in the Fossil Record. Columbia University Press, New York.Google Scholar
Meadows, P. S., Meadows, A., and Murray, J. M. H. 2012. Biological modifiers of marine benthic seascapes: Their role as ecosystem engineers. Geomorphology, 157–158:3148.Google Scholar
Mullins, H. T., Thompson, J. B., McDougall, K., and Vercoutere, T. L. 1985. Oxygen-minimum zone edge effects: evidence from the central California coastal upwelling system. Geology, 13:491494.Google Scholar
Murray, J. M. H., Meadows, A., and Meadows, P. S. 2002. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review. Geomorphology, 47:1530.Google Scholar
Neira, C., Gad, G., Arroyo, N. L., and Decraemer, W. 2001a. Glochinema bathyperuvensis sp. n. (Nematoda, Epsilonematidae): a new species from Peruvian bathyal sediments, SE Pacific Ocean. Contributions to Zoology, 70:147159.Google Scholar
Neira, C., and Hopner, T. 1994. The role of Heteromastus filiformis (Capitellidae, Polychaeta) in organic carbon cycling. Ophelia, 39:5573.Google Scholar
Neira, C., Sellanes, J., Levin, L. A., and Arntz, W. E. 2001b. Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep-Sea Research I, 48:24532472.CrossRefGoogle Scholar
Palma, M., Quiroga, E., Gallardo, V. A., Arntz, W., Gerdes, D., Schneider, W., and Hebbeln, D. 2005. Macrobenthic animal assemblages of the continental margin off Chile (22° to 42° S). Journal of the Marine Biological Association of the UK, 85:233245.CrossRefGoogle Scholar
Parham, J. F., Donoghue, P. C. J., Bell, C. J., Calway, T. D., Head, J. J., Holroyd, P. A., Inoue, J. G., Irmis, R. B., Joyce, W. G., Ksepka, D. T., Patané, J. S. L., Smith, N. D., Tarver, J. E., Van Tuinen, M., Yang, Z., Angielczyk, K. D., Greenwood, J. M., Hipsley, C. A., Jacobs, L., MacKovicky, P. J., Müller, J., Smith, K. T., Theodor, J. M., Warnock, R. C. M., and Benton, M. J. 2012. Best practices for justifying fossil calibrations. Systematic Biology, 61:346359.Google Scholar
Payne, J. L., McClain, C. R., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, J. R. A., Lyons, S. K., McShea, D. W., Novack-Gottshall, P. M., Smith, F. A., Spaeth, P., Stempien, J. A., and Wang, S. C. 2010. The evolutionary consequences of oxygenic photosynthesis: a body size perspective. Photosynthesis Research, 107:3757.Google Scholar
Peterson, K. J., and Butterfield, N. J. 2005. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences, USA, 102:95479552.Google Scholar
Peterson, K. J., Summons, R., and Donoghue, P. C. J. 2007. Molecular paleobiology. Palaeontology, 50:775810.Google Scholar
Poinar, G. Jr., Acra, A., and Acra, F. 1994. Earliest fossil nematode (Mermithidae) in Cretaceous Lebanese amber. Fundamental and Applied Nematology, 17:475477.Google Scholar
Poinar, G. J., Kerp, H., and Hass, H. 2008. Palaeonema phyticum gen. n., sp. n. (Nematoda: Palaeonematidae fam. n.), a Devonian nematode associated with early land plants. Nematology, 10:914.Google Scholar
Raff, R. A., and Raff, E. C. 1970. Respiratory mechanisms and the metazoan fossil record. Nature, 228:10031005.CrossRefGoogle ScholarPubMed
Reinhard, C. T., Planavsky, N. J., Robbins, L. J., Partin, C. A., Gill, B. C., Lalonde, S. V., Bekker, A., Konhauser, K. O., and Lyons, T. W. 2013. Proterozoic ocean redox and biogeochemical stasis. Proceedings of the National Academy of Sciences of the United States of America, 110:53575362.Google Scholar
Rhoads, D. C., and Morse, J. W. 1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia, 4:413428.Google Scholar
Runnegar, B. 1982. A molecular-clock date for the origin of the animal phyla. Lethaia, 14:199205.Google Scholar
Runnegar, B. 1991. Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes. Palaeogeography, Palaeoclimatology, Palaeoecology, 97:97111.Google Scholar
Shaikh, M. A., Meadows, A., and Meadows, P. S. 1998. Biological control of avalanching and slope stability in the intertidal zone, p. 309329. In Black, K. S., Paterson, D. M., and Cramp, A. (eds.), Sedimentary Processes in the Intertidal Zone. Geological Society of London Special Publications 139, London.CrossRefGoogle Scholar
Schopf, T. J. M. 1978. Fossilization potential of an intertidal fauna: Friday Harbor, Washington. Paleobiology, 4:261270.Google Scholar
Schram, F. R. 1973. Pseudocoelomates and a nemertine from the Illinois Pennsylvanian. Journal of Paleontology, 47:985989.Google Scholar
Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A., and Knoll, A. H. 2013a. Oxygen, ecology and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences, USA, 110:1344613451.Google Scholar
Sperling, E. A., Halverson, G. P., Knoll, A. H., MacDonald, F. A., and Johnston, D. T. 2013b. A basin redox transect at the dawn of animal life. Earth and Planetary Science Letters, 371–372:143155.Google Scholar
Sperling, E. A., Pisani, D., and Peterson, K. J. 2007. Poriferan paraphyly and its implications for Precambrian paleobiology, p. 355368. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society Special Publications 286, The Geological Society of London, London.Google Scholar
Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. Molecular paleobiological insights into the origin of the Brachiopoda. Evolution and Development, 13:290303.Google Scholar
Sperling, E. A., Robinson, J. M., Pisani, D., and Peterson, K. J. 2010. Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules. Geobiology, 8:2436.Google Scholar
Woulds, C., Cowie, G. L., Levin, L. A., Andersson, J. H., Middelburg, J. J., Vendewiele, S., Lamont, P. A., Larkin, K. E., Gooday, A. J., Schumacher, S., Whitcraft, C., Jeffreys, R. M., and Schwartz, M. 2007. Oxygen as a control on seafloor biological communities and their roles in sedimentary carbon cycling. Limnology and Oceanography, 52:16981709.Google Scholar
Wild, C., Roy, H., and Huettel, M. 2005. Role of pelletization in mineralization of fine-grained coastal sediments. Marine Ecology Progress Series, 291:2333.CrossRefGoogle Scholar
Zuckerkandl, E., and Pauling, L. 1965. Evolutionary divergence and convergence in proteins. In Bryson, V. and Vogel, H. J. (eds.), Evolving Genes and Proteins. Academic Press, New York.Google Scholar