Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-03T09:47:19.503Z Has data issue: false hasContentIssue false

Stratification and Oxygen Isotopes in the Paleozoic: Is Paleotermometry in Hot Water?

Published online by Cambridge University Press:  21 July 2017

Peter A. Allison
Affiliation:
T.H. Huxley School of Environment, Earth Sciences and Engineering, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BP, UK
Rupert Ford
Affiliation:
Dept. Of Applied Mathematics, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BP, UK
Richard Corfield
Affiliation:
Dept. Of Earth Sciences, Oxford University, Parks Road, Oxford OX1 3PR., UK
Get access

Extract

The oxygen isotope method is probably the most widely used proxy of paleotemperature determination in the fossil record. The relationship as first proposed by Urey (1947) suggests that the ratio of 18O to 16O in the calcitic shells of fossils is proportional to temperature. This was subsequently confirmed by empirical studies (Epstein et al, 1951, Emiliani, 1954; 1955). However, Shackleton (1967), suggested on the basis of co-variance of benthonic and planktonic foraminifera, that the δ18O composition of seawater varied only as a function of glacial ice growth and decay. However, more recent studies have shown that there is still a residual temperature component in the δ18O variability of deep waters.

Type
Research Article
Copyright
Copyright © 1998 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A., and Briggs, D. E. G. 1993. Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology 21: 6568.Google Scholar
Arthur, M. A., and Kump, L. R. 1998. The Phanerozoic history of seawater oxygen isotope composition. Abstracts of the 1998 Spring Meeting of the American Geophysical Union, S50.Google Scholar
Berry, W. B. N., and Wilde, P. 1978. Progressive ventilation of the oceans: an explanation for the distribution of lower Paleozoic Black Shales. American Journal of Sciences 278:257275.Google Scholar
Berry, W. B. N., and Wilde, P., 1990. Graptolite biogeography: implications for palaeogeography and palaeoceanography. pp 129137 In, McKerrow, W. S. and Scotese, C. R., (eds.), Palaeozoic palaeogeography and biogeography. Geological Society Memoir, 12.Google Scholar
Brasier, M. D. 1995. Fossil Indicators of nutrient levels: eutrophication and climate change. pp 113132 in, Bosence, D.W.J., and Allison, P. A., (eds.), Marine paleoenvironmental analysis from fossils. Geological Society of London. Special Publication, 83.Google Scholar
Bralower, T.J. and Thierstein, H.R., 1984. Low productivity and slow deep-water circulation in mid-Cretaceous oceans, Geology 12: 614618.Google Scholar
Brass, G.W., Southam, J.R. and Peterson, W.H. 1982. Warm saline bottom water in the ancient ocean. Nature 296: 620623.Google Scholar
Corfield, R. M. 1995. An introduction to the techniques, limitations and landmarks of carbonate oxygen isotope paleothermometry. pp 2742. in, Bosence, D.W.J., and Allison, P. A., (eds.), Marine paleoenvironmental analysis from fossils. Geological Society of London. Special Publication, 83.Google Scholar
Corfield, R. M., Cartlidge, J. E., Premoli-Silva, I., and Housley, R. A. 1991. Oxygen and carbon isotope stratigraphy of the Paleogene and Cretaceous limestones in the Bottaccione Gorge and the Contessa Highway sections, Umbria, Italy. Terra Nova, 3: 414422.CrossRefGoogle Scholar
Emiliani, C. 1954. Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios. American Journal of Science, 252: 149158.Google Scholar
Emiliani, C. 1955. Pleistocene temperatures. Journal of Geology, 63: 538575.Google Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C. 1951. Carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 62: 417426.CrossRefGoogle Scholar
Fischer, A. G. 1984. The two Phanerozoic supercycles. pp 129150. in, Berggren, W.A. and Van Covering, J. A., (eds.), Catastrophes and Earth History, Princeton University Press, Princeton.Google Scholar
Hill, A. E., James, I. D., Linden, P. F., Matthews, J. P., Prandle, D., Simpson, J. H., Gmitrowicz, E. M., Smeed, D. A., Lwiza, K. M. M., Durazo, R., Fox, A. D. and Bowers, D. G. D. G. 1993. Dynamics of tidal mixing fronts in the North Sea. Philosophical Transactions of the Royal Society of London, A343: 431446.Google Scholar
Hudson, J. D. and Anderson, T. F. 1989. Ocean temperatures and isotopic compositions through time. Transactions of the Royal Society of Edinburgh: Earth Sciences 80:183192.Google Scholar
Luyten, J., Pedlosky, J. and Stomel, H. 1983. The ventilated thermocline. Journal of Physical Oceanography 13:293309.Google Scholar
Marshall, J. D. 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine 129: 143160.Google Scholar
Muehlenbachs, K., and Clayton, R. N. 1976. Oxygen isotope composition of the oceanic crust and its bearing on seawater. Journal of Geophysical Research 81:43654369.CrossRefGoogle Scholar
Muehlenbachs, K. 1986. Alteration of the oceanic crust and the 18O history of seawater, pp. 425444. in, Valley, J. W. et al., (eds.), Stable Isotopes in High Temperature Geochemical Processes. Mineralogical Society of America Reviews in Mineralogy, 16.Google Scholar
Nehring, D. 1991. Die hydrographiisch-chemischen in der westlichen und zentralen Ostsee von 1979 bis 1988 –ein Vergleich. Meereswissenschaftliche Berichte Warnem, 2: 145.Google Scholar
Popp, B. N., Anderson, T. F., and Sandberg, P. A. 1986. Brachiopods as indicators of original isotopic composition in some Paleozoic limestones. Geological Society of America Bulletin 97:12621269.Google Scholar
Railsback, L. B., 1990. Influence of changing deep ocean circulation on the Phanerozoic oxygen isotopic record. Geochimica et Cosmochimica Acta 54: 15011509.Google Scholar
Railsback, L. B., Ackerly, S. C., Anderson, T. F., and Cisne, J. L., 1990. Palaeontological and isotope evidence for warm saline deep waters in Ordovician Oceans. Nature 343:156159.Google Scholar
Salmon, R., 1990. The thermocline as an internal boundary layer. Journal of Marine Research 48:437469.CrossRefGoogle Scholar
Samelson, R. M. and Vallis, G. K. 1997. Large-scale circulation with small diapycnal diffusion: The two-thermocline limit. Journal of Marine Research 55: 223275.Google Scholar
Shackleton, N. J. 1967. Oxygen isotope analyses and Pleistocene temperatures reassessed. Nature 215: 1517.CrossRefGoogle Scholar
Shackleton, N. J., Imbrie, J., and Hall, M. A., 1984. Oxygen and carbon isotope record of East Pacific core V19–30: Implications for the formation of deep water in the late Pleistocene North Atlantic. Earth and Planetary Science Letters 65: 233244.CrossRefGoogle Scholar
Simpson, J. H. 1981. The shelf-sea fronts: implications of their existence and behaviour, Philosophical Transactions of the Royal Society of London A302: 531546.Google Scholar
Stansfield, K. and Garrett, C. C. 1997. Implications of the salt and heat budgets of the Gulf of Thailand. Journal of Marine Research 55:935963.Google Scholar
Tolmazin, D. 1985. Changing coastal oceanography of the Black Sea. I: northwest shelf. Progress in Oceanography 15:217276.CrossRefGoogle Scholar
Tomczak, M. and Godfrey, J. S. 1994. Regional Oceanography: an introduction. 422p., Pergamon, Oxford.Google Scholar
Urey, H. C. 1947. The thermodynamic properties of isotopic substances Journal of the Chemical Society 1947:562581.Google Scholar
Valentine, J. W. 1985. Are interpretations of ancient marine temperatures constrained by the presence of ancient marine organisms?, pp. 623627. in, Sundquist, E. T., and Broecker, W. S., (eds.), The carbon cycle and atmospheric CO2: Natural variations Archaen to Present, American Geophysical Union Geophysical Monograph 32.Google Scholar
Veizer, J., Fritz, P. and Jones, B., 1986. Geochemistry of Brachiopods: oxygen and carbon isotopic records of Paleozoic oceans. Geochimica et Cosmochimica Acta 50:16791696.CrossRefGoogle Scholar
Weaver, A. J., Marotzke, J., Cummins, P. F. and Sarachik, E. S. 1993. Stability and variability of the thermohaline circulation. Journal of Physical Oceanography 23:3960.Google Scholar
Winton, M. and Sarachik, E. S. 1993. Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. Journal of Physical Oceanography 23:13891410.2.0.CO;2>CrossRefGoogle Scholar
Wright, J., Schrader, H., and Holser, W. T. 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta 51:631644.Google Scholar
Yurtsever, Y. 1976. World wide survey of stable isotopes in precipitation. Report section of isotope hydrology (IAEA), November; 40.Google Scholar