Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-06T11:37:42.520Z Has data issue: false hasContentIssue false

Phylogenetic Reconstructions of Ostracodes – A Molecular Approach

Published online by Cambridge University Press:  21 July 2017

Isa Schön
Affiliation:
Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
Koen Martens
Affiliation:
Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
Get access

Abstract

Molecular work on ostracodes has thus far either used allozyme-based or DNA-based techniques. The application of allozyme-based methods has provided numerous data on population genetics and reproductive modes in ostracodes. With this technique, it has also been possible to construct phylogenies, although these have been restricted to distance-based methods. With the usage of DNA-based methods, a new era in ostracode research has begun. It is now possible to obtain accurate estimates for genetic diversities at very fine scales, even within individuals. The DNA-based approach is also very useful for reconstructing evolutionary histories at different taxonomic levels. Within species, for example, phylogenies reveal past episodes of dispersal and genetic exchange. Together with morphological data, DNA sequence data can test for congruence of molecular and morphological evolution and variability. At high taxonomic levels, DNA sequence data provide information on mechanisms of evolution and speciation. This allows for testing whether a certain, morphological feature has evolved once or several times independently. By applying the principle of the molecular clock, DNA sequence data provide relative age estimates that can be calibrated against fossil data and be linked to past climatic or geological events.

Type
Research Article
Copyright
Copyright © 2003 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 33893402.Google Scholar
Baker, A.J. (ed.) 2000. Methods in Ecology. Molecular methods in ecology. Blackwell Science, Oxford.Google Scholar
Butlin, R.K. and Menozzi, P. 2000. Open questions in evolutionary ecology: do ostracods have the answers? Hydrobiologia 419: 114.Google Scholar
Butlin, R.K., Schön, I. and Griffiths, H. I. 1998 a. Introduction to reproductive modes), pp. 124. In Martens, K. (ed.) Sex and Parthenogenesis. Evolutionary Ecology of Reproductive Modes in Nonmarine Ostracods. Backhuys Publishers, Leiden.Google Scholar
Butlin, R.K., Schön, I. and Martens, K. 1999. Origin, age and diversity of clones. Journal of Evolutionary Biology 12: 10201022.Google Scholar
Chaplin, J.A. 1992. Variation in the mode of reproduction among individuals of the ostracod Candonacypris novaezelandiae . Heredity 68: 411424.CrossRefGoogle Scholar
Chaplin, J.A. 1993. The local displacement of a sexually reproducing ostracod by a conspecific parthenogen. Heredity 71: 269–268.CrossRefGoogle Scholar
Chaplin, J.A. and Ayre, D.J. 1989. Genetic evidence of variation in the contributions of sexual and asexual reproduction to populations of the freshwater ostracod Candonacypris novaezelandiae . Freshwater Biology 22: 275284.Google Scholar
Chaplin, J.A. and Ayre, D.J. 1997. Genetic evidence of widespread dispersal in a parthenogenetic freshwater ostracod. Heredity 78: 5767.Google Scholar
Chaplin, J. and Hebert, P.D.N. 1997. Cyprinotus incongruens (Ostracoda): an ancient asexual? Molecular Ecology 6: 155168.CrossRefGoogle Scholar
Cywinska, A. and Hebert, P.D.N. 2002. Origins of clonal diversity in the hypervariable asexual ostracode Cypridopsis vidua . Journal of Evolutionary Biology 15: 134145.CrossRefGoogle Scholar
Danielopol, D.L., Olteanu, R., Löffler, H. and Carbonel, P. 1990. Present and past geographical ecological distribution of Cytherissa (Ostracoda, Cytherideidae). Bulletin de l'Institute de Géologique du Bassin de l'Acquitaine 47: 97118.Google Scholar
De Salle, R., Giribert, G. and Wheeler, W. 2002a. Techniques in Molecular Systematics and Evolution. Birkhäuser Verlag, Basel.CrossRefGoogle Scholar
De Salle, R., Giribert, G. and Wheeler, W. 2002b. Molecular systematics and evolution: theory and practise. Birkhäuser Verlag, Basel.Google Scholar
Felsenstein, J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics 25: 471492.Google Scholar
Felsenstein, J. 1981. Evolutionary trees from gene-frequencies and quantitative characters - finding maximum likelihood estimates. Evolution 35: 12291242.Google Scholar
Felsenstein, J. 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5: 164166.Google Scholar
Finston, T. 2002. Geographic patterns of population genetic structure in Mytilocypris (Ostracoda: Cyprididae): interpreting breeding systems, gene flow and history in species with differing distributions. Molecular Ecology 11: 19311946.Google Scholar
Gandolfi, A., Bonilauri, P., Rossi, V. and Menozzi, P. 2001. Intraindividual and intraspecies variability of ITS1 sequences in the ancient asexual Darwinula stevensoni (Crustacea: Ostracoda). Heredity 87: 449455.Google Scholar
Griffiths, A.J.F., Miller, J.H., Suzuki, D.T., Lewontin, R.C. and Gelbart, W.M. 1993. An introduction to genetic analysis. Freeman and Company, New York.Google Scholar
Harvey, P.H., Leigh Brown, A.J., Maynard Smith, J. and Nee, S. 1996. New uses for new phylogenies. Oxford University Press, Oxford.Google Scholar
Hasegawa, M., Kishino, Y. and Yano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160174.Google Scholar
Havel, J.E. and Hebert, P.D.N. 1989. Apomictic parthenogenesis and genotypic diversity in Cypridopsis vidua (Ostracoda: Cyprididae). Heredity 62: 383392.Google Scholar
Havel, J.E. and Hebert, P.D.N. 1993. Clonal diversity in parthenogenetic ostracods, p. 353368. In McKenzie, K.G. and Jones, P.J. (eds.) Ostracoda in the earth and life sciences. A.A. Balkema.Google Scholar
Havel, J.E., Hebert, P.D.N. and Delorme, L.D. 1990a. Genetics of sexual Ostracoda from a low Arctic site. Journal of Evolutionary Biology 3: 6584.Google Scholar
Havel, J.E., Hebert, P.D.N. and Delorme, L.D. 1990b. Genotypic diversity of asexual Ostracoda from a low arctic site. Journal of Evolutionary Biology 3: 391410.Google Scholar
Hebert, P.D.N. and Beaton, M.J. 1989. Methodologies for allozyme analysis using Cellulose Acetate Electrophoresis. Beaumont.Google Scholar
Hennig, W. 1950. Grundzüge einer Theorie der phylogenetischen Systematik. Deutscher Zentralverlag, Berlin.Google Scholar
Hoelzel, A.R. 1998. Molecular Genetic Analysis of Populations. A practical approach, 2nd edition. IRL Press at Oxford University Press, Oxford.Google Scholar
Huelsenbeck, J.P., Ronquist, F., Nielsen, and Bolback, J.P. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 23102314.Google Scholar
Karp, A., Issaac, P.G. and Ingram, D.S. (eds.) 1998. Molecular tools for screening biodiversity. Plants and animals. Chapman and Hall, London.Google Scholar
Kimura, , 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Ecology and Evolution 16: 111120.Google Scholar
Kumar, S., Tamur, K. and Nei, M. 1993. Molecular Evolutionary Analysis (mega version 1.01). Pennsylvania State University, University Park, PA.Google Scholar
Lewis, P.O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50: 913925.Google Scholar
Li, W.-H. 1997. Molecular evolution. Sinauer Associates, Sunderland MS.Google ScholarPubMed
Linton, Y.M., Samanidou-Voyadjoglou, A. and Harbach, R.E. 2002. Ribosomal ITS2 sequence data for Anopheles maculipennis and An. messeae in northern Greece, with a critical assessment of previously published sequences. Insect Molecular Biology 11: 379383.Google Scholar
Little, T.J. and Hebert, P.D.N. 1994. Abundant asexuality in tropical freshwater ostracodes. Heredity 73:549555.Google Scholar
Little, T.J. and Hebert, P.D.N. 1996. Endemism and ecological islands: the ostracods from Jamaican bromeliads. Freshwater Biology 36: 327338.Google Scholar
Little, T.J. and Hebert, P.D.N. 1997. Clonal diversity in high arctic ostracods. Journal of Evolutionary Biology 10: 233252.Google Scholar
Martens, K. 1997. Review: Speciation in ancient lakes. Trends in Ecology and Evolution 12: 177182.CrossRefGoogle Scholar
Martens, K., Rossetti, G., Butlin, R.K. and Schön, I. (in press). Molecular and morphological phylogeny of Darwinulidae (Crustacea, Ostracoda). Hydrobiologia.Google Scholar
Oakley, T.H. In press. Mydocopa (Crustacea: Ostracoda) as models for evolutionary studies of light and vision: Multiple origins of bioluminescence and extreme sexual dimorphism. Hydrobiologia.Google Scholar
Oakley, T.H. and Cunningham, C.W. 2002. Molecular phylogenetic evidence for the independent evolutionary origin of an arthropod compound eye. Proceedings of the National Academy of Sciences, USA, 99: 14261430.Google Scholar
Oakley, T.H. and Phillipps, R.B. 1999. Phylogeny of salmoline fishes based on growth hormone introns: Atlantic (Salmo) and Pacific (Oncorhynchus) salmon are not sister taxa. Molecular Phylogenetics and Evolution 11: 381393.Google Scholar
Page, D.M. and Holmes, E.C. 1998. Molecular evolution: a phylogenetic approach. Blackwell Science, Oxford.Google Scholar
Rossi, V. and Menozzi, P. 1990. The clonal ecology of Heterocypris incongruens (Ostracoda). Oikos 57: 388398.Google Scholar
Rossi, V. and Menozzi, P. 1993. The clonal ecology of Heterocypris incongruens (Ostracoda): life history traits and photoperiod. Functional Ecology 7: 177182.CrossRefGoogle Scholar
Rossi, V. and Menozzi, P. 1994. Enzyme and DNA polymorphism in ostracod evolutionary ecology, p. 4354 In Home, D.J. and Martens, K. (eds.) The evolutionary ecology of reproductive modes in nonmarine Ostracoda. Greenwich University Press, Greenwich.Google Scholar
Rossi, V., Gandolfi, A. and Menozzi, P. 1996. Egg diapause and clonal structure in parthenogenetic populations of Heterocypris incongruens (Ostracoda). Hydrobiologia 320: 4554.CrossRefGoogle Scholar
Rossi, V., Giordano, P. and Menozzi, P. 1993. Genetic variability in parthenogenetic populations of Heterocypris incongruens (Crustacea, Ostracoda), p. 369383 In McKenzie, K.G. and Jones, P.J. (eds.) Ostracoda in the earth and life sciences. A.A. Balkema.Google Scholar
Rossi, V., Rozzi, M.C. and Menozzi, P. 1991. Life strategy differences among electrophoretic clones of Heterocypris incongruens . Verhandlungen der Internationalen Vereinigung für Limnologie 24: 28162819.Google Scholar
Rossi, V., Schön, I., Butlin, R.K. and Menozzi, P.P. 1998. Clonal diversity, p. 257274 In Martens, K. (ed.) Sex and Parthenogenesis. Evolutionary Ecology of Reproductive Modes in Nonmarine Ostracods. Backhuys Publishers, Leiden.Google Scholar
Schön, I. 2001. PCR primers and conditions for nonmarine ostracods. BioTechniques 31: 10121016.Google Scholar
Schön, I., Butlin, R.K., Griffiths, H.I., and Martens, K. 1998a. Slow molecular evolution in an ancient asexual ostracod. Proceedings of the Royal Society, London B 265: 235242.Google Scholar
Schön, I. and Butlin, R.K. 1998b. Genetic diversity and molecular phylogeny, pp. 275293 In Martens, K. (ed.) Sex and Parthenogenesis. Evolutionary Ecology of Reproductive Modes in Nonmarine Ostracods. Backhuys Publishers, Leiden.Google Scholar
Schön, I., Gandolfi, A., Di Masso, E., Rossi, V., Griffiths, H.I., Martens, K., and Butlin, R.K. 2000a. Persistence of asexuality through mixed reproduction in Eucypris virens (Crustacea, Ostracoda). Heredity 84: 161169.CrossRefGoogle ScholarPubMed
Schön, I. and Martens, K. 1998. Opinion: DNA repair in an ancient asexual - a new solution for an old problem? Journal of natural History 32: 943948.Google Scholar
Schön, I. and Martens, K. 2003. No slave to sex. Proceedings of the Royal Society, London B: 270: 827833.Google Scholar
Schön, I., Martens, K., Van Doninck, K. and Butlin, R.K. 2003. Evolution in the slow lane. Biological Journal of the Linnean Society 79: 93100.CrossRefGoogle Scholar
Schön, I., Verheyen, E. and Martens, K. 2000 b. Speciation in ancient lake ostracods: comparative analysis of Baikalian Cytherissa and Tangnayikan Cyprideis . Verhandlungen de Internationalen Vereinigung für Limnologie 27: 26742677.Google Scholar
Swofford, D.L. 1998 paup. Phylogenetic Analysis Using Parsimony (and other methods), version 4.0. Sunderland: Sinauer Assoc.Google Scholar
Swyla, T. and Geiger, W. 1990. Genetic and morphological polymorphism in the freshwater ostracod Cytherissa lacustris (Sars) of lakes Mondsee and Attersee (Austria). Bulletin de l' Institute Géologique du Bassin de l' Aquitaine 47: 6981.Google Scholar
Swyla, T., Glazewska, I., Whatley, R.C. and Moguilewsky, A. 1995. Genetic differentiation in the brackish-water ostracod Cyprideis torosa . Marine Biology 121: 647653.Google Scholar
Swyla, T. and Lorenc, R. 1982. Esterase polymorphism as a marker in interpopulation differentiation in Cyprinotus incongruens (Ramd.) (Ostracoda, Crustacea). Bulletin de l' Academie Polonaise de la Science 29: 317322.Google Scholar
Swyla, T., Suomalainen, E., Saura, A. and Lokki, J. 1985. Genetic structure in natural populations of Ostracoda. I. Electrophoretic methods. Zeitschrift für Evolutionsforschung 23: 194198.Google Scholar
Swyla, T. 1989. Gene conversion as a possible factor influencing polymorphism. Hereditas 111: 171174.Google Scholar
Tautz, D., Arctander, P., Minelli, A., Thomas, R.H. and Vogler, A.P. 2003. A plea for DNA taxonomy. Trends in Ecology and Evolution 18: 7074.Google Scholar
Turgeon, J. and Hebert, P.D.N. 1994. Evolutionary interactions between sexual and all-female taxa of Cyprinotus (Ostracoda: Cyprididae). Evolution 48: 18551865.Google Scholar
Turgeon, J. and Hebert, P.D.N. 1995. Genetic characterization of breeding systems, ploidy levels and species boundaries in Cypricercus (Ostracoda). Heredity 75: 561570.Google Scholar
Xia, X. 2000. Data analysis in molecular biology and evolution. Kluwer Academic Publishers, Boston.Google Scholar
Yamaguchi, S. 2000. Phylogenetic and biogeographical history of the genus Ishizakiella (Ostracoda) inferred from mitochondrial COI gene sequences. Journal of Crustacean Biology 20: 357384.Google Scholar
Yamaguchi, S. 2001. Origin and morphological evolution of cytherocopine ostracods inferred from 18S ribosomal DNA sequences and fossil records. Abstract band of the 14th ISO (International Symposium on Ostracoda), August 2001, Shizuoka, Japan, 35.Google Scholar
Zuckerkandl, E. and Pauling, L. 1965. Molecules as documents of evolutionary history. Journal of Theoretical Biology 8: 357366.Google Scholar