Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T21:27:18.453Z Has data issue: false hasContentIssue false

The Modernization of Landscapes during the Late Paleozoic-Early Mesozoic

Published online by Cambridge University Press:  21 July 2017

Hans Kerp*
Affiliation:
Forschungsstelle für Paläobotanik, Geologisch-Paläontologischen Institut, Westfälische Wilhelms-Universität, Hindenburgplatz 57, D-48143 Münster, Germany
Get access

Extract

Since their first appearance in the Middle-Late Silurian, land plants have played an increasingly important role in shaping terrestrial ecosystems and landscapes. It is difficult to overestimate their role because they form the framework for terrestrial ecosystems, provide habitats for terrestrial animals, form an important part of the food chain, affect weathering processes and have a direct impact on soil formation, and, last but not least, play a primary role in the oxygen/carbon cycles.

Type
Research Article
Copyright
Copyright © 2000 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdesselam-Rouighi, F.F., Coquel, R., and Fekirine, B. 1998. Comparaison des évenements palynologiques à la limite Viséen-Namurien en Europe occidentale et en Afrique du Nord. Bulletin du Service Géologique de l'Algérie, 9:149165.Google Scholar
Andrews, H.N., Gensel, P.G., and Forbes, W.H. 1974. An apparantly heterosporous plant from the Middle Devonian of New Brunswick. Palaeontology, 17:387408.Google Scholar
Archangelsky, S. and Wagner, R.H. 1983. Glossopteris anatolica sp. nov. from uppermost Permian strata in south-east Turkey. Bulletin of the British Museum Natural History (Geology), 37(3):8191.Google Scholar
Ash, S.R. 1980. Upper Triassic floral zones of North America, p. 153170. In Dilcher, D.L. and Taylor, T.N. (eds), Biostratigraphy of fossil plants. Dowden, Hutchinson and Ross, Stroudsburg, PA.Google Scholar
Ash, S.R. 1986. Fossil plants and the Triassic-Jurassic boundary, p. 21–20. In Padian, K. (ed.), The beginning of the age of dinosaurs. Cambridge University Press, Cambridge.Google Scholar
Ash, S.R. 1999. An Upper Triassic upland flora from north-central New Mexico, U.S.A. Review of Palaeobotany and Palynology, 105:183200.CrossRefGoogle Scholar
Axsmith, B.J., Taylor, T.N., and Taylor, E.L. 1998. A new fossil conifer from the Triassic of North America: implications for models of ovulate cone scale evolution. International Journal of Plant Sciences, 159:358366.CrossRefGoogle Scholar
Balme, B.E. 1995. Fossil in situ spores and pollen grains: An annotated catalogue. Review of Palaeobotany and Palynology, 87:81323.CrossRefGoogle Scholar
Barlow, J.A. (ed.). 1975. Proceedings of the First I.C. White Memorial Symposium “The Age of the Dunkard”. xviii + 352 p. West Virginia Geological and Economic Survey, Morgantown,Google Scholar
Barth, S., and Mohr, B.A.R. 1994. Palynostratigraphically determined age of the Tregiovo sedimentary complex in relation to radiometric emplacement ages of the Atesina volcanic complex (Permian, Southern Alps, N Italy). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 192: 273292.Google Scholar
Barthel, M. 1976. Die Rotliegendflora Sachsens. Abhandlungen des Staatlichen Museums für Geologie und Mineralogie Dresden, 24:1190.Google Scholar
Barthel, M. 1977. Die Gattung Dicranophyllum Gr. 'Eury in den varistischen Innensenken der DDR. Hallesches Jahrbuch für Geowissenschaften, 2:7386.Google Scholar
Barthel, M. 1980a. Calamiten aus dem Oberkarbon und Rotliegend des Thüringer Waldes. 100 Jahre Arboretum (1879–1979), p. 237258.Google Scholar
Barthel, M. 1980b. Pecopteris (Scolecopteris)-Arten aus dem Rotliegenden von Manebach in Thüringen. Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Reihe, 29:351366.Google Scholar
Barthel, M. 1980c. Pecopteris-Arten E.F. von Schlotheims aus Typuslokalitäten in der DDR. Schriftenreihe geologische Wissenschaften Berlin, 16:275304.Google Scholar
Barthel, M. 1982. Die Pflanzenwelt, p. 63131. In Haubold, H. (ed.), Die Lebewelt des Rotliegenden. Neue Brehm-Bücherei 154. Ziemsen Verlag, Wittenberg-Lutherstadt.Google Scholar
Barthel, M., and Kerr, H. 1992. Eine alternative Artikulaten-Entwicklung im Perm. Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Reihe Mathematik/Naturwissenschaften, 1, 41:8186.Google Scholar
Barthel, M., and Kozur, H. 1981. Ein Callipteris-Vorkommen im Thüringer Wald. Freiberger Forschungshefte, C 363:2741.Google Scholar
Barthel, M., and Noll, R. 1999. On the growth habit of Dicranophyllum hallei Remy et Remy. Veröffentlichungen Naturhistorisches Museum Schleusingen, 14:5964.Google Scholar
Barthel, M., and Rössler, R. 1994. Calamiten aus dem Oberrotliegend des Thüringer Waldes. - Was ist“Walchia imbricatata”?. Veröffentlichungen Naturhistorisches Museum Schleusingen, 9:6980.Google Scholar
Barthel, M., and Rössler, R. 1995. Rotliegend-Farne in weiszen Vulkan-Aschen-“Tonsteine” der Döhlen-Formation als paläobotanische Fundschichten. Veröfffentlichungen des Museums für Naturkunde Chemnitz, 18:524.Google Scholar
Barthel, M., and Rössler, R. 1996. Paläontologische Fundschichten im Rotliegend von Manebach_____ Thür. Wald) mit Calamites gigas (Sphenophyta). Veröffentlichungen Naturhistorisches Museum Schleusingen, 11:321.Google Scholar
Barthel, M., and Weiss, H.J. 1997. Xeromorphe Baumfarne im Rotliegend Sachsens. Veröffentlichungen des Museums für Naturkunde Chemnitz, 20: 4555.Google Scholar
Barthel, M., Noll, R., and Bettag, E. 1998. Dicranophyllum hallei Remy and Remy im oberen Rotliegend. Veröffentlichungen des Museum für Naturkunde Chemnitz, 21: 520.Google Scholar
Bateman, R.M., and DiMichele, W.A. 1994. Heterospory: the most iterative key innovation in the evolutionary history of the plant kingdom. Biological Reviews of the Cambridge Philosophical Society, 69:345417.CrossRefGoogle Scholar
Bless, M.J.M., Loboziak, S., and Streel, M. 1977. An Upper Westphalian C“Hinterland” microflora from the Haaksbergen-I Borehole (Netherlands). Mededelingen Rijksgeologische Dienst, Nieuwe Serie, 28–5:135149.Google Scholar
Brousmiche-Delcambre, C., Coquel, R., and Wagner, R.H. 1995. New interpretation of the genus Omphalophloios White, 1898 (a primitive lycophyte). Comptes Rendus de l'Académie des Sciences, Série IIa, 321:179184.Google Scholar
Broutin, J. 1986. Étude paléobotanique et palynologique du passage Carbonifère Permien dans le Sud-Ouest de la Peninsule iberique. Cahiers de Paléontologie, 165 p. C.N.R.S., Paris.Google Scholar
Broutin, J., and Kerp, H. 1994. Aspects of Permian palaeobotany and palynology. XIV. A new form-genus of broad-leaved Late Carboniferous and Early Permian Northern Hemisphere conifers. Review of Paleobotany and Palynology, 83:241251.CrossRefGoogle Scholar
Broutin, J., Aassoumi, H., El Wartiti, M., Freytet, P., Kerp, H., Queseda, C., and Toutin-Morin, N. 1998. The Permian basins of Tiddas, Bou Achouch and Khenifra (Central Marocco), biostratigraphic and palaeophytogeographic implications. Mémoires du Muséum National d'Histoire Naturelle, 179: 257278.Google Scholar
Broutin, J., Chácteauneauf, J. J., and Mathis, V. 1992. Permian basins in the French Massif Central. I. The Lodéve Basin. Cahiers de Micropaléontologie, Nouvelle Série, 7:107122.Google Scholar
Broutin, J., Doubinger, J., Langiaux, J., and Primey, D. 1986. Conséquences de la coexistence de flores à caractères Stéphaniens et Autuniens dans les bassins limniques d'Europe occidentale. Mémoires de la Societé Géologique de la France, Nouvelle Série, 149:1525.Google Scholar
Broutin, J., Doubinger, J., Farjanel, G., Freytet, P., Kerp, H., Langiaux, J., Lebreton, M.L., Sebban, S., and Satta, S. 1990. Le renouvellement des flores au passage Carbonifère Permien: approches stratigraphique, biologique, sédimentologique. Comptes Rendus de l'Académie des Sciences Série II, Fascicule A - Sciences de la Terre et des Planètes, 311:15631569.Google Scholar
Broutin, J., Roger, J., Platel, J.P., Angiolini, L., Baud, A., Bucher, H., Marcoux, J., and Al Hashmi, H. 1995. The Permian Pangea. Phytogeographic implications of new paleontological discoveries in Oman (Arabien Peninsula). Comptes Rendus de l'Académie des Sciences Série II, Fascicule A - Sciences de la Terre et des Planètes, 321:10691086.Google Scholar
Brugman, W.A., Van Bergen, P.F., and Kerp, J.H.F. 1994. A quantitative approach to Triassic palynology: the Lettenkeuper of the Germanic Basin as an example, p. 409429. In Traverse, A. (ed.), Sedimentation of organic particles. Cambridge University Press.CrossRefGoogle Scholar
Burger, K., Hess, J.C., and Lippolt, H.J. 1997. Tephrochronologie mit Kaolin-Kohlentonsteinen: Mittel zur Korrelation paralischer und limnischer Ablagerungen des Oberkarbons. Geologisches Jahrbuch, Reihe A, 147:339.Google Scholar
Cassinis, G. and Doubinger, J. 1991a. Artinskian to Ufimian palynomorph assemblages from the central southern alps, Italy, and their regional stratigraphic implications. Contributions to Eurasian Geology, International Congres on the Permian System of the World, Perm, Russia. Occasional Publications ESRI, New Series, 8b: 918.Google Scholar
Cassinis, G. and Doubinger, J. 1991b. On the geological time of the typical Collio and Tregiovo continental beds in the southalpine Permian (Italy), and some additional observations. Atti Ticinense di Scienze della Terra, 34: 120.Google Scholar
Chaloner, W.G., and Meyen, S.V. 1973. Carboniferous and Permian floras of the northern continents, p. 169186. In Hallam, A. (ed.), Atlas of palaeobiogeography. Elsevier, Amsterdam.Google Scholar
Chácteauneuf, J.J., Broutin, J., Farjanel, G., Mathis, V., and Pacaud, G. 1992. Permian basins in the French Massif Central. II. The Autun Permian Basin, the Autunian Stratotype. Cahiers de Micropaléontologie, Nouvelle Série, 7:107139.Google Scholar
Cleal, C.J. 1991. Carboniferous and Permian biostratigraphy. in: Cleal, C.J. (ed.), Plant fossils in geological investigation - the Palaeozoic. Ellis Horwood, New York, p. 182215.Google Scholar
Cleal, C.J. 1993a. Pteridophyta, p. 779794. In Benton, M.J. (ed.), The fossil record. Chapman & Hall, London.Google Scholar
Cleal, C.J. 1993b. Gymnospermophyta, p. 795808. In Benton, M.J. (ed.), The fossil record. Chapman & Hall, London.Google Scholar
Cleal, C.J., and Thomas, B.A. 1998. Tectonics, tropical forest destruction and global warming in the Late Carboniferous. 5th European Palaeobotanical and Palynological Conference, Cracow Poland, Abstracts, p. 27.Google Scholar
Clement-Westerhof, J.A. 1984. Aspects of Permian palaeobotany and palynology. IV. The conifer Ortiseia Florin from the Val Gardena Formation of the Dolomites and the Vicentinian Alps (Italy) with a revised concept of the Walchiaceae (Göppert) Schimper. Review of Palaeobotany and Palynology, 41:51166.CrossRefGoogle Scholar
Clement-Westerhof, J.A. 1987. Aspects of Permian palaeobotany and palynology. VII. The Majonicaceae, a new family of Late Permian conifers. Review of Palaeobotany and Palynology, 52:375402.CrossRefGoogle Scholar
Cornet, B., and Olsen, P.E. 1990. Early to Middle Carnian (Triassic) flora and fauna of the Richmond and Tylorsville basins, Virginia and Maryland, U.S.A. Virginia Museum of Natural History, Guidebook Number 1:187.Google Scholar
Daber, R. 1959. Die Mittel-Visé-Flora der Tiefbohrungen von Doberlug-Kirchhain. Geologie, Beiheft, 26:183.Google Scholar
Delevoryas, T. and Hope, R.C. 1981. More evidence for conifer diversity in the Upper Triassic of North Carolina. American Journal of Botany, 68: 10031007.CrossRefGoogle Scholar
De Zigno, A. 1862. Sulle olante fossili del Trias di Recoaro. Venetzia, 31 pp.Google Scholar
DiMichele, W.A., and Aronson, R.B. 1992. The Pennsylvanian-Permian vegetational transition: A terrestrial analogue to the onshore-offshore hypothesis. Evolution, 46:807824.CrossRefGoogle Scholar
DiMichele, W.A., and Hook, R.W. 1992. Paleozoic terrestrial ecosystems, p. 206325. In Behrensmeyer, A.K., Damuth, J.D., DiMichele, W.A., Potts, R., Sues, H.-D. and Wing, S.L. (eds.), Terrestrial ecosystems through time. University of Chicago Press, Chicago.Google Scholar
DiMichele, W.A., and Phillips, T.L. 1996. Climatic change, plant extinctions and vegetational recovery during the Middle-Late Pennsylvanian transition: the case of tropical peat-forming environments in North America, p. 201221. In Hart, M.B. (ed.), Biotic recovery from mass extinction events. Geological Society Special Publication, 102.Google Scholar
DiMichele, W.A., and Phillips, T.L., and Peppers, R.A. 1985. The influence of climate and depositional environment on the distribution and evolution of coal-swamp plants, p. 223256. In Tiffney, B.H. (ed.), Geological factors and the evolution of plants. Yale University Press.Google Scholar
DiMichele, W.A., Mamay, S.H., Chaney, D.S., Hook, R.W., and Nelson, W.J. In press . An Early Permian flora with Late Permian and Mesozoic affinities from North-Central Texas. Journal of Paleontology.Google Scholar
DiMichele, W.A., Dixon, W.H., Nelson, W.J., Chaney, D.S., and Hook, R.W. In press . An Early Permian flora from the Central Basin Platform of Gaines County, west Texas. PALAIOS.Google Scholar
Obruskina, I.A. 1994. Triassic floras of Eurasia. Österreichische Akademie der Wissenschaften, Schriftenreihe der Erdwissenschaftlichen Kommission, 10:1422.Google Scholar
Doubinger, J. 1956. Contribution a l'étude des flores Autuno-Stéphaniennes. Mémoires de la Société Géologique de France, 75:1175.Google Scholar
Doubinger, J. 1979. Aperçu général des flores du Stéphanien B, C et D(?) dans les bassins houillers de la France. Compte Rendu 8e Congrès International de Stratigraphie et de Géologie du Carbonifère, Moskou, 1975, 3:141147.Google Scholar
Doubinger, J., and Heyler, D. 1975. Nouveaux fossiles dans le Permien français. Bulletin de la Societé Géologique de France, (7) 17:11761180.CrossRefGoogle Scholar
Doubinger, J., and Kruseman, G.P. 1965. Sur la flore du Permien de la région de Lodève. Bulletin de la Societé Géologique de France, (7)7:541548.CrossRefGoogle Scholar
Doubinger, J., and Langiaux, J. 1982. Un faux problème: la limite Stéphanien/Autunien. Comptes Rendus de l'Académie des Sciences Série II, Fascicule A - Sciences de la Terre et des Planètes, 294: 395398.Google Scholar
Doubinger, J., Branchet, M., and Langiaux, J. 1979. Présence de Callipteris flabellifera Weiss dans le Stéphanien de Blanzy-Montceau (Massif Central, France). Révue Périodique, La Physiophile' - Societé des Études des Sciences et Historique, Montceau-les-Mines, 91:6772.Google Scholar
Doubinger, J., Jacob, A., and Vetter, P. 1976. Sur la présence de végétaux fossiles dur genre Callipteris Brongn. Dans le terrain houiller de la Loire. Comptes Rendus de l'Académie des Sciences de Paris, 282:21512153.Google Scholar
Doubinger, J., Vetter, P., Langiaux, J., Galtier, J., and Broutin, J. 1995. La flore fossile du bassin houiller de Saint-Étienne. Mémoires du Muséum National d'Hitoire Naturelle, 164: 1355.Google Scholar
Edwards, D., Feehan, J., and Smith, D.G. 1983. A late Wenlock flora from Co. Tipperary, Ireland. Botantical Journal of the Linnean Society of London, 86:1936.Google Scholar
Edwards, D., Kerp, H., and Hass, H. 1998. Stomata in early land plants; an anatomical and ecophysiological approach. Journal of Experimental Botany, 49, Special Issue, p. 225278.CrossRefGoogle Scholar
Elias, M.K. 1944. Evolution of Mesolobus and age of the earliest Walchia . Geological Society of America Bulletin, 55:1468.Google Scholar
El-Khayal, A.A., and Wagner, R.H. 1985. Upper Permian stratigraphy and megafloras of Saudi Arabia: palaeogeographic and climatic implications. Compte Rendu Diexième Congrès International de Stratigraphie et de Géologie du Carbonifère, Madrid, 1981, 3:1726.Google Scholar
El-Khayal, A.A., Chaloner, W.G., and Hill, C.R. 1980. Palaeozoic plants from Saudi Arabia. Nature, 285:3334.CrossRefGoogle Scholar
Erwin, D.H. 1993. The Great Paleozoic Crisis - Life and Death in the Permian. Columbia University Press, New York, 327 pp.Google Scholar
Eshet, Y., Rampino, M.R., and Visscher, H. 1995. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology, 23:967970.2.3.CO;2>CrossRefGoogle Scholar
Fairon-Demaret, M. 1996. Dorinnotheca streelii Fairon-Demaret, gen. et sp. nov., a new early seed plant from the upper Famenium of Belgium. Review of Paleobotany and Palynology, 93:217233.CrossRefGoogle Scholar
Fairon-Demaret, M., and Scheckler, S.E. 1987. Typification and redescription of Moresnetia zalesskyi Stockmans, 1948, an early seed plant from the Upper Famennian of Belgium. Bulletin de l'Institut Royal des Sciences Naturelles de la Belgique, 57:183199.Google Scholar
Falke, H. 1972. The continental Permian in North- and South Germany. in: Falke, H. (ed.), Rotliegend - Essays on European Lower Permian. International Sedimentary Petrographical Series, 15:43113. E.J. Brill, Leiden.CrossRefGoogle Scholar
Florin, R. 1938–1945. Die Koniferen des Oberkarbons und des unteren Perms. Palaeontographica B, 85: 1729.Google Scholar
Florin, R., 1949. The morphology of Trichopitys heteromorpha Saporta, a seed-plant of Palaeozoic age, and the evolution of the female flowers in the Ginkgoinae. Acta Horti Bergiani, 15(5):79109.Google Scholar
Freytet, P., Kerp, H., and Broutin, J. 1996. Permian freshwater stromatolites associated with the conifer shoots Cassinisia orobica Kerp et al. - a very peculiar type of fossilization. Review of Paleobotany and Palynology, 91:85105.CrossRefGoogle Scholar
Fuchs, G., Grauvogel-Stamm, L., and Mader, D. 1991. Une remarquable flore à Pleuromeia et Anomopteris in situ du Buntsandstein moyen (Trias inférieur) de l'Eifel (R.F. Allemagne) morphologie, paléoécologie et paléogéographie. Palaeontographica, Abteilung B, 222:89120.Google Scholar
Gall, J.C. and Grauvogel-Stamm, L. 1999. Paläoökologie des Oberen Buntsandsteins am westrand des Germanischen Beckens: Der Voltziensandstein im nordöstlichen Frankreich als deltaische Bildung. In: Hauschke, N. and Wilde, V. (eds.), Trias- eine ganz andere Welt, III, 8: 283298. Verlag Dr. F. Pfeil, München.Google Scholar
Gall, J.C. and Grauvogel-Stamm, L. Nel, A., and Papier, F. 1998. La crise biologique du Permien et la renaissance triasique. Comptes Rendus de l'Académie des Sciences Série II, Fascicule A - Sciences de la Terre et des Planètes, 326:112.Google Scholar
Galtier, J. and Broutin, J. 1995. La flore de la zone de Transition de L'Autunien supérieur de Lodève. Sciences Géologiques Bulletin, 48:8393.CrossRefGoogle Scholar
Galtier, J. and Phillips, T.L. 1985. Swamp vegetation from Grand'Croix (Stephanian) and Autun (Autunian), France, and comparisons with coal-ball peats of the Illinois Basin. Comtes Rendus du 9e Congrès International de Stratigraphie et de Géologie du Carbonifère, Urbana, U.S.A. 1979, 5:1324.Google Scholar
Galtier, J., Scott, A.C., Powell, J.H., Glover, B.W., and Waters, C.N. 1992. Anatomically preserved conifer-like stems from the Upper Carboniferous of England. Proceedings of the Royal Society of London B, 247:211214.Google Scholar
Gand, G., Kerp, H., Parsons, C., and Martinez-Garcia, E. 1997. Palaeoenvironmental and stratigraphic aspects of the discovery of animal traces and plant remains in Spanish Permian Red Beds (Peña Sagra, Cantabrian Mountains, Spain). Geobios, 30:295318.CrossRefGoogle Scholar
Gao, Z.F. and Thomas, B.A. 1989. A review of fossil cycad megasporophylls, with new evidence of Crossozamia Pomel and its associated leaves from the Lower Permian of Taiyuan, China. Review of Paleobotany and Palynology, 60:205223.Google Scholar
Gao, Z.F. and Thomas, B.A. 1989. Occurrence of earliest cycads in the Permian of China and its bearing on their evolution. Chinese Science Bulletin, 34:766769.Google Scholar
Gastaldo, R.A. 1986. An explanation for lycopod configuration, ‘Fossil Grove’ Victoria Park, Glasgow. Scottish Journal of Geology, 22:7783.CrossRefGoogle Scholar
Gillespie, W.H., Rothwell, G.W., and Scheckler, S. 1981. The earliest seeds. Nature, 293:462464.CrossRefGoogle Scholar
Gothan, W. 1912. Eine wenig bekannte Fundamentaltatsache der Paläobotanik. Zeitschrift der deutschen geologischen Gesellschaft, Monatsberichte, 64:262265.Google Scholar
Gothan, W., and Gimm, O. 1930. Neuere Beobachtungen und Betrachtungen über die Flora des Rothliegenden in Thüringen. Arbeiten aus dem Institut für Paläobotanik und Petrographie der Brennsteine, 2(1):3974.Google Scholar
Gothan, W., and Nagalhard, K. 1922 Kupferschieferpflanzen aus dem niederrheinischen Zechstein. Jahrbuch der Preussischen geologischen Landesanstalt, 42:440460.Google Scholar
Grauvogel-Stamm, L. 1978. La Flore du Grès a Voltzia (Buntsandstein supérieur) des Vosges du Nord (France) - Morphologie, Anatomie, Interprétations phylogénique et Paléogéographie. Mémoires des Sciences Géologiques de l'Université Louis Pasteur Strasbourg, 50:1225.Google Scholar
Grauvogel-Stamm, L., 1991. Bustia ludovivi gen. et sp. nov., a new reproductive organ from the Voltzia sandstone (early Middle Triassic) of the Vosges (France). Its bearing for the lycopsid origin. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 183:329345.Google Scholar
Grauvogel-Stamm, L., 1993. Pleuromeia sternbergii (Münster) Corda from the Lower Triassic of Germany - further observations and comparative morphology of its rooting organ. Review of Paleobotany and Palynology, 77:185212.CrossRefGoogle Scholar
Grauvogel-Stamm, L., 1999. Pleuromeia sternbergii (Münster) Corda, eine charakteristische Pflanze des deutschen Buntsandsteins, p. 271282. In Pfeil, F. (ed.), Trias- eine ganz andere Welt.Google Scholar
Hallam, A. and Wignall, P.B. 1997. Mass extinctions and their aftermath. Oxford University Press, 320 p.CrossRefGoogle Scholar
Haubold, H. 1985. Stratigraphische Grundlagen des Stefan C und Rotliegenden im Thüringer Wald. Schriftenreihe geologische Wissenschaften Berlin, 23:1110.Google Scholar
Haubold, H., and Schaumberg, G. 1985. Die Fossilien des Kupferschiefers. Die Neue Brehm-Bücherei, 333, 224 p.Google Scholar
Hill, C.R. and El-Khayal, A.A. 1983. Late Permian plants including charophytes from the Khuff Formation of Saudi Arabia. Bulletin of the British Museum for Natural History (Geology), 37(3):105112.Google Scholar
Hill, C.R., Wagner, R.H., and El-Khayal, A.A. 1985. Quasimia gen. nov., an early Marattia-like fern from the Permian of Saudi Arabia. Scripta Geologica, 79:150.Google Scholar
Inosova, K.I., Kruchina, A.K., and Schvartsman, E.G. 1976. Atlas of microspores and pollen from the Upper Carboniferous and Lower Permian of the Donets Basin. Nedra, Moskow, 159 pp. (in Russian).Google Scholar
Jongmans, W.J. 1928. Congrès pour l'étude de la stratigraphie du Carbonifère dans les différents centres houillers de l'Europe, p. 348. Comptes Rendus Congrès pour l'Avancement des Études de Stratigraphie du Carbonifère, Heerlen 1927.Google Scholar
Jongmans, W.J., and Gothan, W. 1937. Betrachtungen über die Ergebnisse des zweiten Kongresses für Karbonstratigraphie. Comptes Rendus du 2e Congrès pour l'Avancement des Études de Stratigraphie du Carbonifère, Heerlen 1935., 1:140.Google Scholar
Josten, K.H. 1991. Die Steinkohlen-Floren Nordwestdeutschlands. Fortschritte in der Geologie Rheinland und Westfalen, 36:1434.Google Scholar
Kelber, K.-P. 1990. Die versunkene Pflanzenwelt aus den Deltasümpfen Mainfrankens vor 230 Millionen Jahren. Beringeria, Sonderheft 1:167.Google Scholar
Kelber, K.-P. 1998. Phytostratigraphische Aspekte der Makrofloren des süddeutschen Keupers. Documentae Naturae, 117:89115.Google Scholar
Kelber, K.-P., and Hansch, W. 1995. Keuperpflanzen. Die Enträtselung einer über 200 Millionen Jahren alten Flora. Museo, 11:1157.Google Scholar
Kerp, H., 1984a. Aspects of Permian palaeobotany and palynology. III. A new reconstruction of Lilpopia raciborskii (Lilpop) Conert et Schaarschmidt (Sphenopsida). Review of Palaeobotany and Palynology, 40:237261.CrossRefGoogle Scholar
Kerp, H., 1984b. Aspects of Permian palaeobotany and palynology. V. On the nature of Asterophyllites dumasii Zeiller, its correlation with Calamites gigas Brongniart and the problem concerning its sterile foliage. Review of Palaeobotany and Palynology, 41:301317.CrossRefGoogle Scholar
Kerp, H., 1988. Aspects of Permian palaeobotany and palynology. X. The West- and Central European species of the genus Autunia Krasser emend. Kerp (Peltaspermaceae) and the form-genus Rhachiphyllum Kerp (callipterid foliage). Review of Palaeobotany and Palynology, 54:249360.CrossRefGoogle Scholar
Kerp, H., 1996. Post-Varician late Palaezoic Northern Hemisphere gymnosperms: the onset to the Mesozoic. Review of Palaeobotany and Palynology, 90: 263285.CrossRefGoogle Scholar
Kerp, H., and Clement-Westerhof, J.A. 1991. Aspects of Permian Palaeobotany and Palynology. XII. The form-genus Walchiostrobus Florin reconsidered. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 183: 257268.Google Scholar
Kerp, H., and Fichter, J. 1985. Die Makrofloren des saarpfälzischen Rotliegenden (?Ober-Karbon - Unter-Perm; SW-Deutschland). Mainzer geowissenschaftliche Mitteilungen, 14:159286.Google Scholar
Kerp, H., and Krings, M. 1998. Climbing and scrambling growth habits: common life strategies among Late Carboniferous seed ferns. Comptes Rendus de l'Académie des Sciences Paris, Sciences de la terre et des planètes, Série IIa, 326:583588.Google Scholar
Kerp, H., Penati, F., Brambilla, G., Clement-Westerhof, J.A., and Van Bergen, P.F. 1996. Aspects of Permian palaeobotany and palynology. XVI. Three-dimensionally preserved stromatolite-incrusted conifers from the Permian of the western Orobic Alps (northern Italy). Review of Palaeobotany and Palynology, 91: 6384.CrossRefGoogle Scholar
Kerp, H., Poort, R.J., Swinkels, H.A.J.M., and Verwer, R. 1990. Aspects of Permian palaeobotany and palynology. IX. Conifer-dominated Rotliegend floras from the Saar-Nahe Basin (?Late Carboniferous-Early Permian; SW-Germany) with special reference to the reproductive biology of early conifers. Review of Palaeobotany and Palynology, 62: 205248.CrossRefGoogle Scholar
Knight, J. 1983a. The stratigraphy of the Stephanian Rocks of the Sabero Coalfield, Léon (NW. Spain) and an investigation of the fossil flora. Part I: The stratigraphy and general geology of the Sabero Coalfield. Palaeontographica B, 187:188.Google Scholar
Knight, J. 1983b. The stratigraphy of the Stephanian Rocks of the Sabero Coalfield Léon (NW. Spain) and an investigation of the fossil flora. Part II: Systematic palaeobotany: Introduction: Pteridospermae. Palaeontographica B, 187:155248.Google Scholar
Knight, J. 1985. The stratigraphy of the Stephanian Rocks of the Sabero Coalfield, Léon (NW. Spain) and an investigation of the fossil flora. Part III: Systematic palaeobotany; pecopterids. Palaeontographica B, 197:180.Google Scholar
Kozur, H. 1978. Bemerkungen zum Vorkommen der Gattung Callipteris Brongn. im Karbon. Verhandlungen der Geologischen Bundesanstalt Wien, 2:1122.Google Scholar
Krings, M., and Kerp, H. 1997. Cuticles of Lescuropteris genuina from the Stephanian (Upper Carboniferous) of Central France: evidence for a climbing growth habit. Botanical Journal of the Linnean Society, 123:7389.Google Scholar
Krings, M., and Kerp, H. 1999. Morphology, growth habit and ecology of Blanzyopteris praedentata (Gothan) nov. comb., a climbing neuropteroid seed fern from the Stephanian of Central France. International Journal of Plant Sciences, 160:603619.CrossRefGoogle Scholar
Krings, M., and Kerp, H. 2000. A contribution to the knowledge of the pteridosperm genera Pseudomariopteris Danzé-Corsin and Helenopteris nov. gen. Review of Palaeobotany and Palynology.CrossRefGoogle Scholar
Langiaux, J. 1984. Flores et faunes des formations supérieures du Stéphanien de Blanzy - Montceau (Massif Central français), Stratigraphie et Paléoécologie. Revue périodique de “La Physiophile”, Montceau-les-Mines (supplement), 100:1270.Google Scholar
Langiaux, J. 1986. Découverte d'un specimen exceptionnel de fructification femelle de Dicksonites sterzeli Zeiller 1888 dans le Stéphanien du Massif Central français. Comptes Rendus de l'Académie des Sciences Paris, Série II, 302:755760.Google Scholar
Langiaux, J. 1994. Macroflore stéphanienne (Carbonifere supérieur) du bassin houiller intramontagneux de Blanzy-Montceau (Massif Central-France), p. 7398. In Poplin, C., and Heyler, D. (eds.), Quand le Massif Central était sous l'équateur: un écosystème carbonifère à Montceau-les-Mines. CTHS, Paris.Google Scholar
Leary, R.L. 1975. Early Pennsylvanian Palaeogeography of an Upland Area, Western Illinois USA. Bulletin de la Societé beige de Géologie, 84:1931.Google Scholar
Leary, R.L. and Pfefferkorn, H.W. 1977. A Early Pennsylvanian flora with Megalopteris and Noeggerathiales from West-Central-Illinois. Illinois State Geological Survey Circular, 500:177.Google Scholar
Lemoigne, Y. 1981a. Présence d'une flore comprenant des élements cathaysiens, dans le centre de l'Arabie Saoudite au Permien supérieur. Comptes Rendus des Séances de l'Académie des Sciences, Série 2, 292:12311233.Google Scholar
Lemoigne, Y. 1981b. Flore mixte au Permien supérieur en Arabie Saoudite. Géobios, 14:611635.CrossRefGoogle Scholar
Lemoigne, Y. and Doubinger, J. 1984. Réflexion sur la coexistence de flores hygrophile, mésophile et xérophile durant le Paléozoique supérieur en Euramérie. Geobios, 17:365369.CrossRefGoogle Scholar
Lesnikowska, A. and Galtier, J. 1991. A reconsideration of four genera of permineralized Marattiales from the Stephanian and Autunian of France. Review of Paleobotany and Palynplogy, 67:141152.CrossRefGoogle Scholar
Lesnikowska, A. and Galtier, J. 1992. Permineralized Marattiales from the Stephanian and Autunian of central France: a reinvestigation of Grandeuryella renaultii (Stur) Weiss emend. Review of Palaeobotany and Palynplogy, 72:299315.CrossRefGoogle Scholar
Looy, C.V., Brugman, W.A., Dilcher, D.L., and Visscher, H. 1999. The delayed resurgence of equatorial forests after the Permian-Triassic ecological crisis. Proceedings of the National Academy of Sciences of the United States of America, 96(24): 1385713862.CrossRefGoogle Scholar
Lützner, H. 1988. Sedimentology and basin development of intramontane Rotliegend basins in Central Europe. Zeitschrift für geologische Wissenschaften Berlin, 16:845863.Google Scholar
Lyons, P.C., and Darrah, W.C. 1987. Paleoenvironmental and paleoecological significance of walchian conifers in Westphalian (Late Carboniferous) horizons of North America. Compte Rendu XIe Congrès International de Stratigraphie et de Geologie du Carbonifère, Beijing, 3: 251261.Google Scholar
Lyons, P.C., and Darrah, W.C. 1989. Earliest conifers of North America: upland and/or paleoclimatic indicators? Palaios, 4: 480486.CrossRefGoogle Scholar
Macgreggor, M., and Walton, J. 1948. The story of the Fossil Grove. City of Glasgow Public Parks and Botanic Gardens Department. 32 p.Google Scholar
Mader, D. 1990. Palaeoecology of the flora in Buntsandstein and Keuper in the Triassic of Middle Europe. G. Fischer-Verlag, Stuttgart, 1582 pp.Google Scholar
Mamay, S.H. 1968. Russelites, new genus, a problematical plant from the Lower Permian of Texas. United States Geological Survey Professional Paper, 593–I:115.Google Scholar
Mamay, S.H. 1969. Cycads: fossil evidence of Late Paleozoic origin. Science, 164:295296.CrossRefGoogle ScholarPubMed
Mamay, S.H. 1976. Paleozoic origin of cycads. U.S. Geol. Surv. Prof. Pap., 934: 148.Google Scholar
Mamay, S.H. 1988. Gigantonoclea in the Lower Permian of Texas. Phytologia, 64:330332.Google Scholar
Mamay, S.H. 1989. Evolsonia, a new genus of Gigantopteridaceae from the Lower Permian Vale Formation, north-central Texas. American Journal of Botany, 76:12991311.Google Scholar
Mamay, S.H. 1995. Reinstatement of the fossil name Russelites (not a synonym of Yuania). Taxon, 44: 4351.CrossRefGoogle Scholar
Mamay, S.H., and Bateman, R.M. 1991. Archaeocalamites lazarii, sp. no v.: the range of Archaeocalamitaceae extended from the lowermost Pennsylvanian to the Mid-Lower Permian. American Journal of Botany, 78:489496.Google Scholar
Mamay, S.H., Miller, J.M., and Rohr, D.M. 1984. Late Leonardian plants from West Texas: The youngest Palaeozoic plant megafossils in North America. Science, 223: 279281.CrossRefGoogle Scholar
Mamay, S.H., Miller, J. M., Rohr, D. M. and Stein, W.E. 1988. Foliar morphology and anatomy of the gigantopterid plant Delnortia abbottiae, from the Lower Permian of West Texas. American Journal of Botany, 75:14091433.CrossRefGoogle Scholar
Mapes, G., and Rothwell, G.W. 1984. Permineralized ovulate cones of Lebachia from Late Palaeozoic limestones of Kansas. Palaeontology, 27:6994.Google Scholar
Mapes, G., and Rothwell, G.W. 1988. Diversity among Hamilton conifers, p. 225244. In Mapes, G. and Mapes, R. (eds.), Regional geology and paleontology of upper Paleozoic Hamilton quarry area in southeastern Kansas, Kansas Geological Survey, Guidebook Series, 6.Google Scholar
Mapes, G., and Rothwell, G.W. 1991. Structure and relationships of primitive conifers. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 183:269287.Google Scholar
Masari, F., Neri, C., Fontana, D., Manni, R., Mariotti, N., Nicosia, U., Pittau, P., Spezzamonte, M., and Stefani, C. 1999. Excursion 3: The Bletterbach Section (Val Gardena Sandstone and Bellerophon Formation), p. 111134. In Cassinis, G., Cortesogno, L., Gaggero, L., Massari, F., Neri, C., Nicosia, U., and Pittau, P., (eds.), Stratigraphy and facies of the Permian deposits between eastern Lombardy and the Western Dolomites. Earth Science Department University Pavia.Google Scholar
Menning, M. 1986. Zur Dauer des Zechsteins aus magnetostratigraphische Sicht. Zeitschrift für geologische Wissenschaften Berlin, 14:395404.Google Scholar
Menning, M., 1995. A numerical time scale for the Permian and Triassic periods: an integrated time analysis, p. 7797. In Scholle, P. A., Peryt, T.M. and Ulmer-Scholle, D.S. (eds.), The Permian of Northern Pangea, Volume 1, Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Meyen, S.V., and Lemoigne, Y. 1986. Dicksonites pluckenetii (Schlotheim) Sterzel and its affinity with Callistophytales. Geobios, 19:8799.CrossRefGoogle Scholar
Naugolnykh, S., and Kerp, H. 1996. Aspects of Permian palaeobotany and palynology. XV. On the oldest known peltasperms with radially symmetrical ovuliferous discs from the Kungurian (uppermost Lower Permian) of the Fore-Urals (Russia). Review of Palaeobotany and Palynology, 91: 3562.CrossRefGoogle Scholar
Peppers, R.A. 1996. Palynological correlation of major Pennsylvanian (Middle and Upper Carboniferous) chronostratigraphic boundaries in the Illinois and other coal basins. Geological Society of America Memoir, 188:1111.Google Scholar
Phillips, T.L., and Peppers, R.A. 1984. Changing patterns of Pennsylvanian coal- swamp vegetation and implications of climatic control on coal occurrence. International Journal of Coal Geology, 3:205255.CrossRefGoogle Scholar
Phillips, T.L., and Peppers., R.A. and DiMichele, W.A. 1985. Stratigraphic and interregional changes in Pennsylvanian coal-swamp vegetation: environmental inferences. International Journal of Coal Geology, 5:43109.CrossRefGoogle Scholar
Poort, R.J., and Kerp, J.H.F. 1990. Aspects of Permian palaeobotany and palynology. XL On the recognition of true peltasperms in the Upper Permian of Western and Central Europe and a reclassification of species formerly included in Peltaspermum Harris. Review of Palaeobotany and Palynology, 63: 197225.CrossRefGoogle Scholar
Poort, R.J., and Veld, H. 1997. Aspects of Permian palaeobotany and palynology. XVIII. On the morphology and ultrastructure of Potonieisporites novicus (prepollen of Late Carboniferous Early Permian Walchiaceae). Acta Botanica Neerlandica, 46:161173.CrossRefGoogle Scholar
Potonié, H. 1899. Lehrbuch der Pflanzenpaläontologie - mit besonderer Berücksichtigung auf die Bedürfnisse der Geologen. Dümmler, Berlin, viii + 402 pp.Google Scholar
Read, C.B., and Mamay, S.H. 1964. Upper Paleozoic floral zones and floral provinces of the United States. United States Geological Survervey Professional Paper, 454:K1K35.Google Scholar
Remy, W., and Remy, R. 1977. Die Floren des Erdaltertums - Einführung in Morphologie, Anatomie, Geobotanik und Biostratigraphie der Pflanzen des Paläophytikums. Glückauf, Essen. 468 pp.Google Scholar
Remy, W., and Remy, R. 1978. Die Flora des Perms im Trompia-Tal und die Grenze Saxon/Thuring in den Alpen. Argumenta Palaeobotanica, 5:5790.Google Scholar
Renault, B., and Zeiller, R. 1888–1890. Flore fossile du terrain houiller de Commentry. Bulletin de la Société de l'industrie Minérale, Saint-Ètienne, 3, II, 2:1746 + Atlas.Google Scholar
Rössler, R. 2000. The late Palaeozoic tree fern Psaronius - an ecosystem unto itself. Review of Palaeobotany and Palynology, 108:5574.CrossRefGoogle Scholar
Rössler, R., and Barthel, M. 1998. Rotliegend taphocoenoses preserved favoured by rhyolithic explosive volcanism. Freiberger Forschungsheft, C474:59101.Google Scholar
Rothwell, G.W. 1975. The Callistophytaceae (Pteridospermopsida): I. Vegetative structures. Palaeontographica Abteilung B, 151:171196.Google Scholar
Rothwell, G.W. 1980. The Callistophytales (Pteridospermopsida): Reproductively sophisticated Palaeozoic Gymnosperms. Review of Paleobotany and Palynology, 32:103121.CrossRefGoogle Scholar
Rothwell, G.W. 1982. New interpretations of the earliest conifers. Review of Palaeobotany and Palynology, 37:728.CrossRefGoogle Scholar
Rothwell, G.W. Grauvogel-Stamm, L., and Mapes, G. 2000. An herbaceous fossil conifer: Gymnospermous ruderals in the evolution of Mesozoic vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology, 156:139145.CrossRefGoogle Scholar
Rothwell, G.W., Mapes, G., and Mapes, R.H. 1997. Late Palaeozoic conifers of North America: structure, diversity and occurrences. Review of Palaeobotany and Palynology, 95:95113.CrossRefGoogle Scholar
Rothwell, G.W., Scheckler, S.E., and Gillespie, W.H. 1989. Elkinsia gen. nov., a Late Devonian gymnosperm with cupulate ovules. Botanical Gazette, 150:170189.CrossRefGoogle Scholar
Schäfer, A., and Korsch, R.J. 1998. Formation and sediment fill of the Saar-Nahe Basin (Permo-Carboniferous, Germany). Zeitschrift der deutschen geologischen Gesellschaft, 149:233269.CrossRefGoogle Scholar
Schenk, A. 1868. Über die Pflanzenreste des Muschelkalkes von Recoaro. Benecke's geognostische und paläontologische Beiträge, 2:7287.Google Scholar
Schneider, J.W. 1996. Biostratigraphie des kontinentalen Oberkarbon und Perm im Thüringer Wald, SW-Saale-Senke - Stand und Probleme. Beiträge zur Geologie von Thüringen, Neue Folge, 3:121151.Google Scholar
Schneider, J.W., Rössler, R., and Gaitzsch, B. 1994. Time lines of the Late Variscan volcanism - a holostratigraphic synthesis. Zentralblatt fur Geologie und Paläontologie, Teil 1, 5/6:477490.Google Scholar
Schweitzer, H.-J. 1960. Die Sphenopteriden des Zechsteins. Senckenbergiana Lethaea, 41:3757.Google Scholar
Schweitzer, H.-J. 1962. Die Makroflora des niederrheinischen Zechstein. Fortschritte in der Geologie Rheinland und Westfalen, 6:146.Google Scholar
Schweitzer, H.-J. 1963. Der weibliche Zapfen von Pseudovoltzia liebeana und seine Bedeutung für die Phylogenie der Koniferen. Palaeontographica, Abteilung B, 113:129.Google Scholar
Schweitzer, H.-J. 1968. Die Flora des Oberen Perms in Mitteleuropa. Naturwissenschaftliche Rundschau, 2:93102.Google Scholar
Schweitzer, H.-J. 1986. The land flora of the English and German Zechstein sequences, p. 3154. In Harwood, G.M., and Smith, D.B. (eds.), The English Zechstein and related topics. Geological Society Special Publication, 22:31–54.CrossRefGoogle Scholar
Scott, A.C. 1974. The earliest conifer. Nature, 251:707708.CrossRefGoogle Scholar
Scott, A.C., and Chaloner, W.G. 1983. The earliest conifer from the Westphalian B of Yorkshire. Proc. R. Soc. London, B 220: 163182.Google Scholar
Solms-Laubach, H. Zu, Graf. 1884. Die Koniferenformen des deutschen Kupferschiefers und Zechsteins. Palaeontologische Abhandlungen, 2:81116.Google Scholar
Stoneley, H.M.M. 1958. The Upper Permian flora of England. Bulletin of the British Museum (Natural History), 3:293337.CrossRefGoogle Scholar
Stur, D. 1885. Die obertriadische Flora der Lunzerschichten und des bituminösen Schiefers von Raibl. Sitzungsberichte der Königliche Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Abteilung 1, 91:93103.Google Scholar
Ullrich, H. 1964. Zur Stratigraphie und Paläontologie der marin beeinfluszten Randfazies des Zechsteinbeckens in Ostthüringen und Sachsen. Freiberger Forschungshefte, C169:1163.Google Scholar
Vetter, P. 1968. Géologie et paléontologie des bassins houillers de Decazeville, de Figeac et du Détroit de Rodez. Houillères du Bassin d'Aquitaine, Albi, 194 p.Google Scholar
Visscher, H. 1971. The Permian and Triassic of the Kingscourt outlier, Ireland - A palynological investigation related to regional stratigraphical problems in the Permian and Triassic of Western Europe. Geological Survey of Ireland, Special Paper, 1:1114.Google Scholar
Visscher, H., and Brugman, W.A. 1986. The Permian-Triassic boundary in the Southern Alps: a palynological approach. Memorie della Societa Geologica. Italiana, 34:121128.Google Scholar
Visscher, H., and Van Der Zwan, C.J. 1981. Palynology of the circum-mediterranean Triassic: Phytogeograpical and palaeoclimatological implications. Geologische Rundschau, 70:625636.CrossRefGoogle Scholar
Visscher, H., Brinkhuis, H., Dilcher, D.L., Elsik, W.C., Eshet, Y.Y., Looy, C.V., Rampino, M.R., and Traverse, A. 1996. The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. Proceedings of the National Academy of Sciences of the United States of America, 93:21552158.CrossRefGoogle ScholarPubMed
Visscher, H., Kerp, H., Clement-Westerhof, J.A., and Looy, C.V. 1999. Permian floras of the Southern Alps, p. 139146. In Cassinis, G., Cortesogno, L., Gaggero, L., Massari, F., Neri, C., Nicosia, U., and Pittau, P., (eds.), Stratigraphy and facies of the Permian deposits between eastern Lombardy and the Western Dolomites. Earth Science Department University Pavia.Google Scholar
Visscher, H., Van Houte, M., Brugman, W.A., and Poort, R.J. 1994. Rejection of a Carnian (Late Triassic) pluvial event” in Europe. Review of Paleobotany and Palynology, 83:217226.CrossRefGoogle Scholar
Wagner, R.H. 1962. On a mixed Cathaysia and Gondwana flora from SE Anatolia (Turkey). Compte Rendu 4e Congrès pour L'Avancement des Études de Stratigraphie et de Géologie du Carbonifère, Heerlen 1958, 3:745752.Google Scholar
Wagner, R.H. 1963. Stephanian B flora from the Ciñera-Matallana coalfield and neighbouring outliers - I. Introduction, Neuropteris . Notas y Comunicaciones del Instituto Geológico y Minero de España, 72:570.Google Scholar
Wagner, R.H. 1964. Stephanian B flora from the Ciñera-Matallana coalfield and neighbourinfg outliers (II). Notas y Comunicaciones del Instituto Geológico y Minero de España, 75:556.Google Scholar
Wagner, R.H. 1965. Stephanian B flora from the Ciñera-Matallana coalfield and neighbouring outliers - III. Callipteridium and Alethopteris . Notas y Comunicaciones del Instituto Geológico y Minero de España, 78:570.Google Scholar
Wagner, R.H. 1985. Upper Stephanian stratigraphy and palaeontology of the Puertollano Basin, Ciudad Real, Spain. Anais da Faculdade de Ciências Universidade do Porto, Supplement Volume, 64:171231.Google Scholar
Wagner, R.H. 1989. A Late Stephanian forest swamp with Sporangiostrobus fossilized by volcanic ash fall in the Puertollano Basin, Spain. International Journal of Coal Geology, 12:523552.CrossRefGoogle Scholar
Wagner, R.H. 1993. Climatic significance of the major chronostratigraphic units of the Upper Palaeozoic. Compte Rendu 12e Congrès International de Stratgraphie et Géologie du Carbonifère et Permíen, Buenos Aires, 1991, 1: 83108.Google Scholar
Wagner, R.H. 1997. Floral palaoecology of the Carboniferous/Permian, p. 143172. In Aguirre, E., Morales, J., and Soria, D. (eds.), Cursos de Verano de El Escorial (1995). Editorial Complutense, Madrid.Google Scholar
Wagner, R.H., and Artieda, J.I. 1970. La Cuenca minera Ciñera-Matallana. Sociedad Anónima Hullera Vasco-Leonesa, Leon, 288 pp.Google Scholar
Wagner, R.H., and Lyons, P.C. 1997. A critical analysis of the higher Pennsylvania megafloras of the Appalachian region. Review of Paleobotany and Palynology, 95:255283.CrossRefGoogle Scholar
Wagner, R.H., Hill, C.R., and El-Khayal, A.A. 1985. Gemillitheca gen. nov., a fertile pecopterid from the Upper Permian of the Middle East. Scripta Geologica, 79: 5174.Google Scholar
Weigelt, J. 1928. Die Pflanzenreste des mitteldeutschen Kupferschiefers und ihre Einschaltung ins Sediment. Eine paläontologische Studie. Fortschritte der Geologie und Paläontologie, 6(19):395591.Google Scholar
Weigelt, J. 1930. Neue Pflanzenfunde aus dem Mansfelder Kupferschiefer. Leopoldiana, Berichte der Kaiserlich Leopoldinischen Deutschen Akademie der Naturforscher zu Halle, 6:643668.Google Scholar
Weigelt, J. 1931. Neue Pflanzenfunde aus dem Mansfelder Kupferschiefer. Zeitschrift für Naturwissenschaften, 89:104125.Google Scholar
Weigelt, J. 1932. Über die Fruktifikationsverhältnisse von Kupferschiefer-Coniferen und andere neue Funde. Paläontologische Zeitschrift, 14:137149.CrossRefGoogle Scholar
White, D. 1929. Flora of the Hermit Shale, Grand Canyon, Arizona. Carnegie Institution of Washinton Publication No. 405:1221.Google Scholar
Zeiller, R. 1898. Contribution a l'étude de la flore ptéridologique des schistes permiens de Lodève. Bulletin du Muséum d'Historie Naturelle Marseille, 1:669.Google Scholar
Zeiller, R. 1906. Études des Gîtes Minéraux de la France. Bassin houiller et permien de Blanzy et du Creusot. Fascicule II. Flore fossile., Paris, 265 pp. + Atlas (51 pl.).Google Scholar
Zodrow, E.L. snImůnek, Z., and Bashforth, A.R. 2000. New cuticular morphotypes of Cordaites principalis from the Canadian Carboniferous Maritimes Basin. Canadian Journal of Botany, 78:135148.CrossRefGoogle Scholar