Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-27T05:45:14.573Z Has data issue: false hasContentIssue false

Evolutionary History of the Ostracoda and the Origin of Nonmarine Faunas

Published online by Cambridge University Press:  21 July 2017

Lisa E. Park
Affiliation:
Department of Geology, University of Akron, Akron, OH 44325-4101 USA
R. Douglas Ricketts
Affiliation:
Large Lakes Observatory, University of Minnesota, Duluth, MN 55812-2496 USA
Get access

Abstract

The Ostracoda are one of the most diverse arthropod groups alive today; they also have a tremendous fossil record. Because of their widespread environmental distributions, small size and carbonate shell, they have become extremely useful biostratigraphic and paleoenvironmental proxy indicators, particularly in nonmarine environments. Despite this utility, little is known about the phylogenetic history of this important group. We reconstructed a phylogenetic history of the major orders and suborders of Ostracoda in order to test the legitimacy of current classification schemes, determine if it is possible for ostracodes to have a Precambrian origin, and test the fidelity of some of the major morphological characters that have documented trends of either increased complexity, such as the hinge and marginal pore canals, or reduction in segments, such as the adductor muscle scar.

In our phylogenetic analysis to test taxonomic fidelity, we coded seven morphological hard part characters for nine taxa from the orders Archaeocopida, Leperditicopida, Palaeocopida, Podocopida, and Myodocopida. A parsimony analysis was performed using PAUP (v. 4.0) yielding 4 trees of 17 steps with low levels of homoplasy and a strong phylogenetic signal. A majority rule consensus tree indicates there is not complete agreement between the standard classification scheme and the phylogeny produced by the characters used to establish the classification. In our complete analysis of Ostracoda, we coded 28 morphological characters that included 14 hard part and 14 soft part characters for twelve taxa that include the Archaeocopida, Leperditicopida, Podocopida, and Myodocopida. A parsimony analysis was completed using PAUP (v. 4.0) yielding 1 tree of 125 steps with low levels of homoplasy and a strong phylogenetic signal. An unrooted analysis of this character set has the Cambrian Archaeopodocopida and the Ordovician-Devonian Leperditicopida in an unresolved polytomy with much younger groups such as the Myodocopina, suggesting a much deeper split in the lineage and a possible Precambrian origin for the Ostracoda. Testing the various character state acquisitions over the tree indicates that the hinge does not show an increase in complexity within a phylogenetic context, while the adductor muscle scars do show a significant trend of decrease in complexity across the tree topology. The marginal pore canals, which are functionally tied to osmoregulation as well as carapace secretion, are extremely homoplastic, indicating that this character, which is related to nonmarine invasions and tolerances, was acquired many times throughout the evolutionary history of Ostracoda.

By creating an evolutionary framework for the Ostracoda such as is presented here, we can further assess character state acquisition, and how it functionally and evolutionarily relates to ostracode paleoenvironmental tolerances. The framework will not only allow us to understand the overall evolution ofthis group but will also allow us to compare the history of the ostracode clade with other groups that also have a history ofmarine and nonmarine transitions.

Type
Research Article
Copyright
Copyright © 2003 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Athersuch, J., Horne, D. J., and Whittaker, J. E. 1989. Marine and brackish water ostracods. Synopses of the British Fauna (New Series), 43, 343 pp. E. J. Brill: Leiden.Google Scholar
Bachnou, A., Bouab, B., and Carbonnel, G. 2000. The contour outline of ostracod genera; an equation; application to the subfamily Trachyleberidinae. Geobios, 33:377386.Google Scholar
Baird, W. 1845. Arrangement of the British Entomostraca, with a list of species, particularly noticing those which have as yet been discovered within the bounds of the Club. Berwickshire Naturalists Club Proceedings [1842–1849]: 145158.Google Scholar
Baird, W. 1850. The natural history of the British Entomostraca. London. The Royal Society: 138182.Google Scholar
Bassler, R.S. and Kellett, B. 1934. Bibliographic Index of Paleozoic Ostracoda. Geological Society of America Special Paper, 1, 500 p.Google Scholar
Brady, G. S., and Norman, A. M. 1889. A monograph of the marine and freshwater Ostracoda of the North Atlantic and of Northwestern Europe. Section 1. Podocopa. Royal Dublin Society of Science Transactions, Series 2, 4:63270.Google Scholar
Carbonel, P., Colin, J. P., Danielopol, D., Loffler, H., and Neustrueva, I. 1988. Paleoecology of limnic ostracodes: A review of some major topics. Palaeogeography, Palaeoclimatology, Palaeoecolgy, 62:413461.Google Scholar
Carbonel, P., Farmer, M., and Lete, C. 1990. The morphological variability of Cytherissa lacustris ecophenotypic aspects. In: Danielopol, D.L., Carbonel, P.P., and Colin, J.-P. (eds.). Cytherissa (Ostracoda)–the Drosophila of Paleolimnology. Bulletin of the Institut Geolologie Bassin d'Aquitaine, 47/48: 247259.Google Scholar
Chivas, A., Dedeckker, P., and Shelley, J. M. G. 1983. Magnesium, strontium, and barium partitioning in nonmarine ostracode shells and their use in paleoenvironmental reconstructions-A preliminary study, pp. 238249. In: Maddocks, R.F. (ed.) Applications of Ostracoda. 8th International Symposium on the Ostracoda. University of Houston Geosciences: Houston.Google Scholar
Cohen, A. C., and Morin, J. G. 1990. Patterns of reproduction in ostracods; a review. Journal of Crustacean Biology, 10:184211.Google Scholar
Cohen, A. C., Martin, J. W., and Kornicker, L. S. 1998. Homology of Holocene ostracode biramous appendages with those of other crustaceans: the protopod, epipod, exopod and endopod. Lethaia, 31:251265.Google Scholar
Colin, J. P., and Carbonel, P. 1996. Middle Jurassic record of the limnic ostracode genus Rosacythere (Limnocytheridae, Timiriaseviinae); implications on the origin and evolution of the Kovalevskiella group. Journal of Micropalaeontology, 15:187191.CrossRefGoogle Scholar
Collier, W. W. 1971. Phylogeny of the Devonian ostracod genus Ctenoloculina Bassler. Contributions from the Museum of Paleontology, University of Michigan, 23:357369.Google Scholar
Conway Morris, S. 1993. The fossil record and the early evolution of the Metazoa. Nature, 361:219225.Google Scholar
Curry, B. 1999. An environmental tolerance index for ostracodes as indicators of physical and chemical factors in aquatic habitats. Palaeogeography, Palaeoclimatology, Palaeoecology, 148:5163.CrossRefGoogle Scholar
Dana, J.D. 1853. Crustacea. United States Exploring Expedition: 12771618.Google Scholar
Danielopol, D. L. 1976. The superfamily Cypridacea; some remarks on the phylogenetical affinities between the main Cypridacean groups. Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg, 18-19:7785.Google Scholar
Dedeckker, P. 1988. An account of the techniques using ostracodes in paleolimnology in Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:463475.CrossRefGoogle Scholar
Gramm, M. N. 1985. The muscle scar in cavellinids and its importance for the phylogeny of platycope ostracodes. Lethaia, 18:3952.Google Scholar
Gramm, M. N., and Yegorov, G. I. 1986. The Early Carboniferous Editiidae (Ostracoda) and comments on the phylogeny of the Cytheracea. Paleontological Journal, 20:4456.Google Scholar
Hartman, G. and Purl, H.S. 1974. Summary of neontological and paleontological classification of Ostracoda. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 70: 773.Google Scholar
Henningsmoen, G. 1953. Classification of Paleozoic straight-hinged ostracods. Norsk Geol. Tidsskrift, 31: 185288.Google Scholar
Holmes, J. P., Hales, P., and Street-Perrott, F. A. 1992. Trace element chemistry of nonmarine ostracodes as a means of paleolimnological reconstruction: An example from the Quaternary of Kashmir, northern India. Chemical Geology, 95:177186.Google Scholar
Horne, D. J., and Martens, K. 1998. An assessment of the importance of resting eggs for the evolutionary success of Mesozoic nonmarine cypridoidean Ostracoda (Crustacea). Archiv Hydrobiologia, Special Issues, Advanced Limnologie, 52:549561.Google Scholar
Horne, D. J., Cohen, A., and Martens, K. 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda, pp. 536. In Holmes, J. A. and Chivas, A. R. (eds.), The Ostracoda: applications in Quaternary research, Geophysical Monograph 131. American Geophysical Union: Washington, D.C. CrossRefGoogle Scholar
Howe, H.V. 1955. Handbook of Ostracod Taxonomy. Louisiana State University Press, Baton Rouge, 386 p.Google Scholar
Howe, H.V. 1962. Ostracod Taxonomy. Louisian State University Press, Baton Rouge, 366 p.Google Scholar
Jones, T.R. 1901. Ostracoda, in Chapman, F. (ed.). On Some Fossils of Wenlock Age from Mulde, Near Klinteberg, Gotland, with Notes by Prof.Jones, T. R. and Bather, F. A. Ann. Mag. Nat. Hist., 7: 141160.Google Scholar
Kempf, E. K. 1980. Index and bibliography of nonmarine Ostracode, 1 Index A, Supplement 1. Sonderveroeffentlichungen des Geologischen Instituts der Universität Koeln, 35:188p.Google Scholar
Kempf, E. K. 1986. Index and bibliography of marine Ostracoda, Part 2. Sonderveroeffentlichungen des Geologischen Instituts der Universität Koeln, 51:712p.Google Scholar
Kempf, E. K. 1988. Index and bibliography of marine Ostracoda, Part 4. Sonderveroeffentlichungen des Geologischen Instituts der Universität Koeln, 53: 454p.Google Scholar
Latreille, P.A. 1802. Histoire Naturelle, Generale et Particulière des Crustaces et des Insectes. Cypris, 4: 232240.Google Scholar
Latreille, P.A. 1806. Genera Crustaceorum et Insectorum, Tomus I: 1303.Google Scholar
Linnaeus, C. 1758. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteriibus, Differentiis, Synonymis, Locis. Tomus I, 151 p.Google Scholar
Maddocks, R. F. 1976. Quest for the ancestral podocopid; numerical cladistic analysis of ostracode appendages, a preliminary report. Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg, 18-19:3953.Google Scholar
Martens, K. 1990. Revision of African Limnocythere s.s. BRADY, 1867 (Crustacea, Ostracoda) with special reference to the Eastern Rift Valley Lakes: morphology, taxonomy, evolution and (palaeo)ecology. Archiv für Hydrobiologie Ergebnisse der Limnologie, 83: 453524.Google Scholar
Martens, K. 1995. On the validity and the taxonomic position of the Cytheridellini (Crustacea, Ostracoda, Limnocytheridae). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 92: 273280.Google Scholar
Martens, K. (ed.) 1998. Sex and parthenogenesis: evolutionary ecology of reproductive modes in nonmarine ostracods. Backhuys, Leiden: The Netherlands.Google Scholar
Martens, K., Horne, D. J., and Griffiths, H. I. 1998. Age and diversity of nonmarine ostracods. In Martens, K. (ed.), Sex and parthenogenesis: evolutionary ecology of reproductive modes in nonmarine ostracods. Backhuys, Leiden: The Netherlands.Google Scholar
Mckenzie, K.G. 1971. Entomostraca of Aldabra, with special reference to the genus Heterocypris (Crustacea, Ostracoda). Philosophical Transactions of the Royal Society of London B 260: 257297.Google Scholar
Mckenzie, K. G. 1972. Contribution to the ontogeny and phylogeny of Ostracoda. International Paleontological Union, Proceedings, 3:165188.Google Scholar
Mckenzie, K. G. 1981. Palaebiogeography of some salt lake faunas. Hydrobiologia, 81-82:407418.Google Scholar
Mckenzie, K. G., and Kaesler, R. L. 1975. An introduction to the numerical phylogeny and classification of paradoxostomatid Ostracoda, including a redescription of Machaerina tenuissima (Norman, 1869). Bulletins of American Paleontology, 65:623636.Google Scholar
Moore, R. C. (ed.) 1961. Treatise on Invertebrate Paleontology, Part Q, Arthropoda 3, Crustacea, Ostracoda. Geological Society of America and the University of Kansas Press: Boulder.Google Scholar
Müller, O. F. 1776. Zoologiae danicae prodromus, seu animalium daniae et Norvegiae indigenarum characters, nomina, et synonyma imprimis popularium, 8: 1282.Google Scholar
Müller, O. F. 1785. Entomostraca seu Insecta testacea, quae in aquis daniae et Norvegiae reperit, descripsit et iconibus illustravit. Lipsiae et Havniae, 135 pp.Google Scholar
Oakley, T. H. and Cunningham, C. W. 2002. Molecular phylogenetic evidence for the independent evolutionary origin of an arthropod compound eye. Proceedings of the National Academy of Sciences of the United States of America 99:14261430.Google Scholar
Olempska, E. 2001. Paleozoic roots of the sigilliid ostracods. Marine Micropaleontology, 41:109123.CrossRefGoogle Scholar
Park, L. E., and Downing, K. F. 2000. Implications of Phylogeny Reconstruction for Ostracod Speciation Modes in Lake Tanganyika. Advances in Ecological Research, 31:303330.CrossRefGoogle Scholar
Park, L. E. 2001. Phylogenetic congruence between hard and soft part data sets: how taphonomy affects phylogenetic resolution of an ostracode clade. GSA Abstracts with Programs, 82:142.Google Scholar
Park, L. E. 2002. Phylogenetic congruence between hard and soft part data sets: how taphonomy affects ostracod phylogenies. The 46th Annual Meeting of the Palaeontological Association, Cambridge, United Kingdom 5.1:33.Google Scholar
Park, L. E., and Gierlowski-Kordesch, E., 2003. From the Green River to East Africa: analogs and anomalies of lacustrine faunal evolution. The 3rd International Limnogeology Congress, Tucson, Arizona.Google Scholar
Park, L. E., Martens, K., and Cohen, A. S., 2002. Phylogenetic Relationships of Gomphocythere (Crustacea: Ostracoda) in Lake Tanganyika, East Africa. Journal of Crustacean Biology, 22:1527.Google Scholar
Pennak, R. W. 1989. Freshwater invertebrates of the United States: Protozoa to Mollusca, 3rd edition: New York: John Wiley and Sons, 628 p.Google Scholar
Petersen, L. E., and Lundin, R. F. 1987. The British Silurian ostracod genus Octonaria Jones, 1887; its revision and phylogeny. Journal of Micropalaeontology, 6:7783.Google Scholar
Pokorny, V. 1951. The Ostracods of the Middle Devonian Red Coral Limestones of Celechovice. Sbornik Statniho Geol. Ustavu Ceskolov. Rep. Oddil Pal., 17:513622.Google Scholar
Pokorny, V. 1957. The phylomorphology of the hinge in Podocopida (Ostracoda, Crustacea) and its bearing on the taxonomy. Acta University Carolina, 5:322.Google Scholar
Pokorny, V. 1958. Grundzuge der Zoologischen Mikropalaontologie, 375402.Google Scholar
Pokorny, V. 1978. Ostracodes, pp. 109150. In Haq, B. U. and Boersma, A. (eds.), Introduction to Marine Micropaleontology. Elsevier: New York.Google Scholar
Puri, H. S. 1974. Normal pores and the phylogeny of Ostracoda. Geoscience and Man, 6:137151.Google Scholar
Rosenfeld, A., and Vesper, B. 1977. The variability of the sieve-pores in Recent and fossil species of Cyprideis torosa (Jones, 1850) as an indicator for salinity and palaeosalinity. In: Loffler, H., and Danielopol, D. (eds.), Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda. Dr. W. Junk Publishers, The Hague: 5567.Google Scholar
Sars, G. O. 1866. Oversigt af Norges marine Ostracoder. Forh. Vid.-Selsk. Christiana, 7:1130.Google Scholar
Sars, G. O. 1888. Nye Bidrag til Kundskaben om Middlehavets Invertebratfauna, v. 4, Ostracoda Mediterranea. Archiv für Mathematica und Naturvidenskab, 12:173324.Google Scholar
Schweitzer, P. N., and Lohmann, G. P. 1990. Life-history and the evolution of ontogeny in the ostracode genus Cyprideis. Paleobiology, 16:107125.Google Scholar
Scott, H. W. 1961. Classification of Ostracoda, pp. Q74Q91. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part Q, Arthropoda 3, Crustacea, Ostracoda. Geological Society of America and the University of Kansas Press: Boulder.Google Scholar
Shu, S. 1990. Cambrian and Early Ordovician “Ostracoda” (Bradoriida) in China. Courier Forschungsinstitut Senckenberg, 123:315330.Google Scholar
Siveter, D. J., and Williams, M. 1997. Cambrian bradoriid and phosphatocopid arthropods of North America. Palaeontological Association, 69 p.Google Scholar
Siveter, D. J., Waloszek, D., and Williams, M. 2001. A phosphatocopid crustacean with appendages from the Lower Cambrian. Science, 293:479481.Google Scholar
Strauss, H.E. 1821. Memoire sur les Cypris, de la Classe des Crustaces. Mus. Nat. d'Hist. Nat. Mem., 7: 3361.Google Scholar
Swartz, F.M. 1936. Revision of the Primitiidae and Beyrichiidae with new Ostracoda from the Lower Devonian of Pennsylvania. Journal of Paleontology., 10: 541586.Google Scholar
Swofford, D. L. 1999. PAUP: Phylogenetic Analysis Using Parsimony, Version 4.0. Computer Program. Smithsonian Institution. Sinauer Associates: Sunderland, Massachusetts.Google Scholar
Tsukagoshi, A. 1990. Ontogenetic change of distributional patterns of pore systems in Cythere species and its phylogenetic significance. Lethaia, 23:225241.Google Scholar
Ulrich, E.O. 1894. The Lower Silurian Ostracoda of Minnesota. Minnesota Geologic and Natural History Survey Report, 3:629693.Google Scholar
Ulrich, E.O. and Bassler, R. S. 1923. Paleozoic Ostracoda: Their morphology, classification and occurrence. Maryland Geologic Survey Silurian: 271391.Google Scholar
Van Morkhoven, F. P. C. M. 1962. Post-Paleozoic Ostracoda: Their Morphology, Taxonomy, and Economic Use, v. 1 and 2. Elsevier Publishing Co.: New York, 204p.Google Scholar
Vannier, J. 1987. Phylogeny, paleoecology and paleobiogeographic implications of the genus Ceratopsis (Ostracoda, Paleocopa) in the Ordovician of Europe and North America. Geobios, 20:725755.Google Scholar
Vannier, J., and Abe, K. 1992. Recent and early Palaeozoic myodocope ostracodes: functional morphology, phylogeny, distribution and lifestyles. Palaeontology, 35:485517.Google Scholar
Wansard, G., Dedeckker, P., and Julia, R. 1998. Variability in ostracod partition coefficients D(Sr) and D(Mg): Implications for lacustrine palaeoenvironmental reconstructions. Chemical Geology, 146:3954.Google Scholar
Whatley, R., and Boomer, I. 2000. Systematic review and evolution of the early Cytheruridae (Ostracoda). Journal of Micropalaeontology, 19:139151.Google Scholar
Whatley, R. C., and Braccini, E. 1998. The origins and early evolution of the Limnocytheridae (Crustacea, Ostracoda). Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 20:271285.Google Scholar
Xia, J., Engstrom, D. R., and Ito, E. 1997. Geochemistry of ostracode calcite: Part 2. The effects of water chemistry and seasonal temperature variation on Candona rawsoni . Geochimica et Cosmochimica Acta, 61:383391.Google Scholar