Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T13:29:20.902Z Has data issue: false hasContentIssue false

Ecological Stability during the Late Paleozoic Cold Interval

Published online by Cambridge University Press:  21 July 2017

Hermann W. Pfefferkorn
Affiliation:
Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316 USA
Robert A. Gastaldo
Affiliation:
Department of Geology, Colby College, Waterville, ME 04901-8858 USA
William A. DiMichele
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 USA
Get access

Extract

Ecosystem Stability and taxonomic stasis are the opposite aspect in the history of life from ecosystem perturbation and reorganization, or extinction and origination. Naturally, change is more exciting than stasis, and change also is more useful in many ways as, for instance, in the development of biostratigraphic frameworks. Paleontological preference for geologically rapid change has gone so far that a fast evolving group of organisms has been used to create an orthostratigraphy (Orthochronologie of Schindewolf, 1950), which is claimed to be the “real” biostratigraphy. By implication, all other taxonomic groups are relegated to a secondary status of merely delivering “parastratigraphies,” which may be useful (locally or regionally), but are not the “real thing.” Ammonites, conodonts, foraminifera, and a few other taxa hold the distinction of being the “chosen” taxa, and it should be self-evident that only marine organisms qualify for this role. On the other hand, organisms on land always have been known to demonstrate coarser stratigraphic resolution. By implication, they might be more prone to ecosystem and taxonomic stasis over the long run. This, in itself, is an important observation.

Type
Research Article
Copyright
Copyright © 2000 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baird, G.C., Shabica, C.W., Erson, J.L., and Richardson, E.S. Jr. 1985. Biota of a Pennsylvanian muddy coast: Habitats within the Mazonian Delta complex, northeast Illinois. Journal of Paleontology, 59:253281.Google Scholar
Behrensmeyer, A.K. and Hook, R.W., Rapporteurs, . 1992. Paleoenvironmental contexts and taphonomic modes in the terrestrial fossil record, p. 15138. In Behrensmeyer, A.K., Damuth, J., DiMichele, W.A., Potts, R., Sues, H-D, and Wing, S. (eds.), Terrestrial Ecosystems through Time. University of Chicago Press, Chicago, IL.Google Scholar
Butts, C. 1926. Geology of Alabama: The Paleozoic rocks. Alabama Geological Survey Special Report, 14:41230.Google Scholar
Cecil, C.B. 1990. Paleoclimate controls on stratigraphic repetition of chemical and clastic rocks. Geology, 18:533536.2.3.CO;2>CrossRefGoogle Scholar
Cecil, C.B., and Edgar, N.T. (eds.). 1994. Predictive stratigraphic analysis; concept and application. U.S. Geological Survey Bulletin 2110. 72 p.Google Scholar
Cremer, L. 1893. Über die fossilen Farne des westfälischen Carbons und ihre Bedeutung für eine Gliederung des Letzteren. Inaugural Dissertation, Universität Marburg, 49 pp.Google Scholar
Demko, T.M. and Gastaldo, R.A., 1992. Paludal environments of the Lower Mary Lee coal zone, Pottsville Formation, Alabama: Stacked clastic swamps and peat mires. International Journal of Coal Geology, 20:2347.Google Scholar
Demko, T.M. and Gastaldo, R.A., 1996. Eustatic and autocyclic influences on deposition of the Lower Pennsylvanian Mary Lee Coal zone, Warrior Basin, Alabama. International Journal of Coal Geology, 31:319.Google Scholar
DiMichele, W.A. and DeMaris, P.J. 1987. Structure and dynamics of a Pennsylvanian-age Lepidodendron forest – Colonizers of a disturbed swamp habitat in the Herrin (No. 6) Coal of Illinois. Palaios, 2:146157.Google Scholar
DiMichele, W.A., and Phillips, T.L. 1996a. Climate change, plant extinctions and vegetational recovery during the Middle-Late Pennsylvanian transition: the case of tropical peat-forming environments in North America. Geological Society Special Publication, 102:201221.Google Scholar
DiMichele, W.A., and Phillips, T.L. 1996b. Clades, ecological amplitudes, and ecomorphs: phylogenetic effects and persistence of primitive plant communities in the Pennsylvanian-age tropical wetlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 127:83105.Google Scholar
DiMichele, W.A., Pfefferkorn, H.W., and Phillips, T.L. 1996. Persistence of Late Carboniferous tropical vegetation during glacially driven climatic and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 125: 105128.Google Scholar
Dopita, M., Havlena, V., and PesnEk, J. 1987. Loziska fosilnich paliv. SNTL/ALFA p. 1264.Google Scholar
Eble, C.F. and Gillespie, W.H. 1989. Palynology of selected Pennsylvanian coal beds from the central and southern Appalachian Basin; correlation and stratigraphic implications, p. 6166. In Englund, K.J., (ed.), Coal and hydrocarbon resources of North America; Volume 2, Characteristics of the Mid-Carboniferous boundary and associated coal-bearing rocks in the central and southern Appalachian Basin. Field Trips for the 28th International Geological Congress.Google Scholar
Frakes, L.E., Francis, J.E., and Syktus, J.I. 1992. Climate Modes of the Phanerozoic. Cambridge University Press, Cambridge, UK. 274 p.Google Scholar
Gastaldo, R.A. 1987. Confirmation of Carboniferous clastic swamp communities. Nature, 326:869871.Google Scholar
Gastaldo, R.A. 1988. The frond architecture of Sphenopteris pottsvillea (White) Gastaldo and Boersma. Journal of Paleontology, 62:982991.Google Scholar
Gastaldo, R.A. 1996. Flöznah and Flözfern Assemblages: Potential Predictors of Late Carboniferous Biome Replacement? p. 1928, In Leary, R.L., (ed.), Patterns in Paleobotany. Proceedings of a Czech-U.S. Carboniferous Paleobotany Workshop. Illinois State Museum Scientific Papers 26.Google Scholar
Gastaldo, R.A. and Boersma, M.A. 1983. A Reinvestigation of Early Pennsylvanian Species of Mariopteris from the Appalachian Region. I. Karinopteris, Mariopteris and the ‘Pottsvillea Complex.’ Review of Paleobotany and Palynology, 38(3/4): 185226.Google Scholar
Gastaldo, R.A. and Staub, J.R. 1997. Peat or no peat: The Rajang and Mahakam River Deltas compared: Geological Society of America, Abstracts with Program, 27(6):3031.Google Scholar
Gastaldo, R.A. and Staub, J.R. 1999. A Mechanism to Explain the Preservation of Leaf Litters Lenses in Coals Derived from Raised Mires. Palaeogeography, Palaeoclimatology, Palaeoecology, 149:114.CrossRefGoogle Scholar
Gastaldo, R.A., Demko, T.M., and Liu, Y. 1991. A mechanism to explain persistent alternation of clastic and peat-accumulating swamps in Carboniferous sequences. Bulletin Société géologique de France t. 162:299305.Google Scholar
Gastaldo, R.A., Demko, T.M., and Liu, Y. 1993. The application of sequence and genetic stratigraphic concepts to Carboniferous coal-bearing strata: An example from the Black Warrior basin, USA. Geologische Rundschau, 82:212226.CrossRefGoogle Scholar
Gastaldo, R.A., Pfefferkorn, H.W. and DiMichele, W.A. 1995. Taphonomic and Sedimentologic Characterization of “Roof-Shale” floras, p. 341352. In Lyons, P., Wagner, R.H. and Morey, E., (eds.), Historical Persepctive of Early Twentieth Century Carboniferous Paleobotany in North America. Geological Society of America Memoir 185.Google Scholar
Gastaldo, R.A., DiMichele, W.A., and Pfefferkorn, H.W. 1996. Out of the Icehouse into the Greenhouse: A Late Paleozoic Analogue for Modern Global Vegetational Change. GSA Today, 10:17.Google Scholar
Gastaldo, R.A., Purkynová, E., snImůnek, Z., Drábková, J., and Eble, C.F. 1998. Vegetational persistence patterns in coastal and continental interiors of the Carboniferous icehouse, Silesian Coal basin, Czech Republic. GSA Penrose Conference, Abstract with program.Google Scholar
Gillespie, W.H. and Rheams, L.J. 1995. Plant megafossils from the Carboniferous of Alabama, U.S.A., p. 191202. In Escobeda, J.L., Grana'dos, L.F., Mele'ndez, B., Pignatelli, R., Ray, R. and Wagner, R.H., (eds.), Dixiéme Congrés International de Stratigraphie et de Géologie du Carbonifére, Madrid, 1983, 2.Google Scholar
Golonka, J., Ross, M.I., and Scotese, C.R. 1994. Phanerozoic paleogeographic and paleoclimatic modeling maps. p. 147. In Embry, A.F., Beauchamp, B., and Glass, D.J., (eds.), Pangea; global environments and resources. Canadian Society of Petroleum Geologists Memoir 17.Google Scholar
Havlena, A. 1961. Die Flöznahe und flözfremde flor des Obserschlesischen Namurs A und B. Palaeontographica Abt. B., 180:2238.Google Scholar
Hazeldine, R.S. 1989. Coal reviewed: Depositional controls, modern analogues, and ancient climates, p. 289308. In Whateley, M.K.G., Pickering, K.T., (eds.), Deltas: Sites and Traps for Fossil Fuels. Geological Society Special Publication 41.Google Scholar
Henry, T.W., Gillsepie, W.H., Gordon, M. Jr., and Schwinfurth, S.P. 1985. Significance of goniatite Bilinguites eliosi and associated biotas, Parkwood Formation and Bangor limestone, northwestern Alabama. Journal of Paleontology, 59:11381145.Google Scholar
Hess, J.C. and Lippolt, H.J. 1986. 40Ar/39 Ar ages of tonstein and tuff sanidines: New calibration points for the improvement of the Upper Carboniferous time scale. Chemical Geology, 59:143154.Google Scholar
Jongmans, W.J. 1915. Paläobotanisch-stratigraphische Studien im Niederländischen Carbon nebst Vergleichen mit umliegenden Gebieten. With Appendix (W.J. Jongmans and W. Gothan) Bemerkungen über einige der in den niederländischen Bohrungen gefundenen Pflanzen. Archiv für Lagerstättenforschung, 18:1186.Google Scholar
Kidston, R. 1893. On the fossil plants of the Kilmarnock, Galston, and Kilwinning coal fields, Ayrshire. Transactions Royal Society, Edinburgh, 37:307358.Google Scholar
Kotas, A. 1995. Moravian-Silesian-Cracovian region, p. 1719. In: Zdanowski, A. and Zakowa, H. (eds.), The Carboniferous System in Poland. Polish Geological Institute, Warszawa (Prace Panstwowego Instytutu Geologicznego, CXLVIII).Google Scholar
Kotasowa, A. and Migier, T. 1995. Macroflora, p. 5665. In: Zdanowski, A. and Zakowa, H. (eds.), The Carboniferous System in Poland. Polish Geological Institute, Warszawa (Prace Panstwowego Instytutu Geologicznego, CXLVIII).Google Scholar
Laveine, J.P. 1993. The distribution of Eurasiatic late Paleozoic floras: A main tool for paleogeographic relationships. Biostratigraphy of Mainland Southeast Asia: Facies and Paleontology, 2:347359.Google Scholar
Liu, Y. and Gastaldo, R.A. 1992a. Characteristics and provenance of log-transported gravels in a Carboniferous channel deposit. Journal of Sedimentary Petrology, 62:10721083.Google Scholar
Liu, Y. and Gastaldo, R.A. 1992b. Characteristics of a Pennsylvanian ravinement surface. Sedimentary Geology, 77:197214.Google Scholar
Lyons, P.C., Meissner, C.R., Barwood, H.L., and Adinolfi, F.G. 1985. North American and European megafloral correlations with the upper part of the Pottsville Formation of the Warrior coal field, Alabama, U.S.A. In Escobeda, J.L., Grana'dos, L.F., Mele'ndez, B., Pignatelli, R., Ray, R. and Wagner, R.H., (eds.), Dixiéme Congrés International de Stratigraphie et de Géologie du Carbonifére, Madrid, 1983, 2:203246.Google Scholar
McCabe, P.J. 1984. Depositional Environments of Coal, p. 1342. In Rahmani, R.A. and Flores, R.M., (eds.), Sedimentology of Coal and Coal-bearing Sequences. Special Publication of the International Association of Sedimentologists, Blackwell Scientific Publications, Oxford, UK.Google Scholar
McCalley, H. 1900. Report on the Warrior Coal Basin. Alabama Geological Survey Special Report 10, 327 p.Google Scholar
Mamay, S.H. and Yochelson, E.L. 1962. Occurrence and significance of marine animal remains in American coal balls. U. S. Geological Survey Professional Paper 193–234.Google Scholar
Menning, M., Weyer, D., Drozdzewski, G., and Van Amerom, H.W.J. 1997. Carboniferous time scales revised 1977. Time scale A (Min. ages) and time scale B (max. ages). Use of geological time indicators. Newsletter on Carboniferous Stratigraphy, 15:2629.Google Scholar
Menning, M., Weyer, D., Drozdzewski, G., Van Amerom, H.W.J. and Wendt, I. In press A Carboniferous Time Scale 2000: discussion and use of geological parameters as time indicators from Central and Western Europe. Geologische Jahrbuch Hannover A 156.Google Scholar
Pashin, J.C. 1994. Cycles and stacking patterns in Carboniferous rocks of the Black Warrior foreland basin. Transactions of the Gulf Coast Association of Geological Societies, 44:556565.Google Scholar
Pashin, J.C., and Groshong, R.H. Jr. 1998. Structural control of coalbed methane production in Alabama. International Journal of Coal Geology, 38:89113.Google Scholar
Peppers, R.A., and Pfefferkorn, H.W. 1970. A comparison of the floras of the Colchester (No. 2) coal and Francis Creek Shale, p. 6174. In Smith, W.H. and others, (eds.), Depositional environments in parts of the Carbondale Formation – western and northern Illinois. Illinois Geological Survey Guidebook Series Vol. 8.Google Scholar
Pnesek, J. 1994. Carboniferous of Central and Western Bohemia (Czech Republic). Czech Geological Survey, Prague. 60 p.Google Scholar
Pfefferkorn, H.W. and Thomson, M.C. 1982. Changes in dominance patterns in Upper Carboniferous plant fossil assemblages. Geology, 10:641644.2.0.CO;2>CrossRefGoogle Scholar
Phillips, T.L., Avcin, M.J., and Berggren, D. 1976. Fossil peat of the Illinois Basin. Illinois State Geological Survey, Education Series 11:139.Google Scholar
Pryor, J.S. and Gastaldo, R.A. 2000. Paleoecological Analysis of Two Early Pennsylvanian Mineral-Substrate Wetlands, Palaios, 15:313.Google Scholar
Purkynová, E. 1970. Die Unternamurflora des Beckens von Horní Slezsko (CSSR): Paläontologische Abhandlungen, Abt. B, Paläobotanik, 3:129268.Google Scholar
Purkynová, E. 1990. K biostratigrfii karbonu v doubravskych vrstvách hornoslezské Cnernouhlené pánve. Cnásopis Slezského Muzea Opava, Serie A, 39:213224.Google Scholar
Rasbury, E.T., Hanson, G.N., Meyeres, W.J., Holt, W.E., Goldstein, R.H., and Saller, A.H. 1998. U-Pb dates of paleosols: Constraints on late Paleozoic cycle durations and boundary ages: Geology, 26:403406.2.3.CO;2>CrossRefGoogle Scholar
Rnehon, F. and Rnehornová, M. 1972. Makrofauna Uhlonosného Karbonu Cneskoslovenské. Cnásti Hornoslezské Pánve. Profil, Ostrava. 136 p.Google Scholar
Schindewolf, O.H. 1950. Grundlagen und Methoden der paläontologischen Chronologie. Naturwissenschaftlicher Verlag, Berlin-Nikolassee, 3rd ed., 152 pp.Google Scholar
Schute, C.H. and Cleal, C.J. 1987. Palaeobotany in museums. Geological Curator, 4:553559.CrossRefGoogle Scholar
Scott, A.C. 1978. Sedimentological and ecological control on Westphalian B plant assemblages from West Yorkshire. Yorkshire Geological Society Proceedings, 41:461508.Google Scholar
Scott, A.C., and Rex, G. 1985. The formation and significance of Carboniferous coal balls. Philosophical Transactions of the Royal Society of London, 331B:123137.Google Scholar
Smith, L.B. Jr., and Read, F.J. 2000. Rapid onset of late Paleozoic glaciation on Gondwana: Evidence from Upper Mississippian strata of the midcontinent, United States. Geology, 28:279282.Google Scholar
Thomas, W.A. 1988. Black Warrior Basin, p. 471492. In Sloss, L.L., (ed.), Sedimentary cover: North American Craton, U.S.: The geology of North America. Geological Society of America. D-2.Google Scholar
Veevers, J.J. and Powell, C.M. 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive sequences in Euramerica. Geological Society of America Bulletin, 98:475487.Google Scholar
Wagner, R.H. (ed.) 1971. The Carboniferous of Northwest Spain. Trabajos de Geologia No. 3, 694 p.Google Scholar
Wagner, R.H. 1984. Megafloral zones of the Carboniferous. Compte Rendu 9e Congrès International de Stratigraphie et Gèologie du Carbonifere, 1:213245.Google Scholar
Wagner, R.H., and Lyons, P.C. 1997. A critical evaluation of the higher Pennsylvanian megafloras of the Appalachian Region. Review of Palaeobotany and Palynology, 95:255284.Google Scholar
Wagner, R.H., and Shepard, F.P. 1936. Sea level and climatic changes in late Paleozoic cycles. Geological Society of America Bulletin, 40:1750.Google Scholar
Wagner, R.H., and Weller, J.M. 1932. Correlation and extent of Pennsylvanian cyclothems. Geological Society of America Bulletin, 43:10031016.Google Scholar
White, D. 1900. The stratigraphic succession of the fossil flora of the Pottsville Formation in the southern anthracite coal fields, Pennsylvania. U.S. Geological Survey Annual Report, 20(2):749930.Google Scholar
Winston, R.B., and Phillips, T.L. 1991. A structurally preserved, Lower Pennsylvanian flora from the New Castle Coal Bed of Alabama. Geological Survey of Alabama, Circular 157, 21 p.Google Scholar
Zalessky, M.D. 1928. Essai d'une division du terrain houiller du Bassin du Donetz d'apres sa flore fossile. Compte Rendu Congrès pour l'Avancement des Études de Stratigraphie Carbonifere, Heerlen 1927, Vaillant-Carmanne, Liége, p. 805820.Google Scholar
Zeiller, R. 1879. Explication de la carte géologique de la France - Seconde Partie, Végétaux fossiles du terrain houiller. 185 pp., Paris.Google Scholar