Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T04:22:19.264Z Has data issue: false hasContentIssue false

Cenozoic Diversification and Extinction Patterns in Caribbean Reef Corals: A Review

Published online by Cambridge University Press:  21 July 2017

Ann F. Budd
Affiliation:
Department of Geoscience, University of Iowa, Iowa City, Iowa 52242, USA
James S. Klaus
Affiliation:
Department of Geological Sciences, University of Miami, Coral Gables, Florida 33124, USA
Kenneth G. Johnson
Affiliation:
Department of Palaeontology, Natural History Museum, London SW7 5BD, UK
Get access

Abstract

Statistical analyses of occurrence data based on collections made from scattered Caribbean sections over the past 20 years indicate that turnover occurred in the Caribbean reef coral fauna between the late Miocene and early Pleistocene. The collections have been identified using standardized procedures, and age-dates assigned using high-resolution chronostratigraphic methods. During turnover, ~80% of the > 100 species and 17 of the 41 genera that were living in the Caribbean during the early Pliocene became extinct, and > 60% of the species now living in the Caribbean originated. Turnover involved increased speciation beginning in the late Miocene and ended with a pulse of extinction in Plio-Pleistocene time. Turnover was preceded by faunal collapse during the late Oligocene to early Miocene, and it was followed by stasis during the late Pleistocene to Recent. During these preceding and succeeding intervals, reef development was at a maximum, although reef coral diversity was relatively low. As a consequence of origination preceding extinction during turnover, most modern Caribbean reef coral species originated before the Plio-Pleistocene peak of extinction, under quite different ecological conditions from those in which they have lived over the past million years. The unusual relationship between origination and extinction may have been caused by changes in productivity associated with emergence of the Central American Isthmus, followed by the onset of Northern Hemisphere glaciation.

During turnover, faunal change was stepwise or gradual. Local assemblages consisted of a mix of extinct and living species, which varied in composition but not in richness. Important reef dominants such as Acropora palmata and A. cervicornis arose in the southern Caribbean and appear to have migrated northward. Faunal change took place in shallow exposed environments, before it occurred in deep protected environments that served as refuges. Plio-Pleistocene extinction was selective for corals with small colonies, and resulted in a faunal shift to the large, fast-growing species that dominate Caribbean reefs today.

Type
Research Article
Copyright
Copyright © 2011 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmon, W. D. 2001. Nutrients, temperature, disturbance, and evolution: A model for the late Cenozoic marine record of the western Atlantic: Palaeogeography, Palaeoclimatology, Palaeoecology, 166:926.CrossRefGoogle Scholar
Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe-Schönberg, D., and Lea, D. W. 2005. Final Closure of Panama and the onset of northern hemisphere glaciation: Earth and Planetary Science Letters, 237:3344.CrossRefGoogle Scholar
Budd, A. F. 2000. Diversity and extinction in the Cenozoic history of Caribbean reefs (Invited review). Coral Reefs, 19:2535.CrossRefGoogle Scholar
Budd, A. F., Adrain, T. S., Park, J. W., Klaus, J. S., and Johnson, K. G. 2008. The Neogene Marine Biota of Tropical America (‘NMITA’) database: Integrating data from the Dominican Republic, p. 301310 In Nehm, R. H. and Budd, A. F. (eds.), 2008. Evolutionary Stasis and Change in the Dominican Republic Neogene. Springer, New York.CrossRefGoogle Scholar
Budd, A. F., and Johnson, K. G. 1999. Origination preceding extinction during Late Cenozoic turnover of Caribbean reefs. Paleobiology, 25:188200.CrossRefGoogle Scholar
Budd, A. F., and Johnson, K. G. 2001. Contrasting evolutionary patterns in rare and abundant species during Plio-Pleistocene turnover of Caribbean reef corals, p. 295325 In Jackson, J. B. C., Lidgard, S., and McKinney, F. K. (eds.), Evolutionary Patterns: Growth, Form, and Tempo in the Fossil Record. Univ. Chicago Press, Chicago.Google Scholar
Budd, A. F., Johnson, K. G., and Edwards, J. C. 1995. Caribbean reef coral diversity during the early to middle Miocene: an example from the Anguilla Formation. Coral Reefs, 14:109117.CrossRefGoogle Scholar
Budd, A. F., Johnson, K. G., and Stemann, T. A. 1996. Plio-Pleistocene turnover and extinctions in the Caribbean reef coral fauna, p. 168204 In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America, Univ. Chicago Press, Chicago.Google Scholar
Budd, A. F., Johnson, K. G., Stemann, T. A., and Tompkins, B. H. 1999. Pliocene to Pleistocene reef coral assemblages in the Limon Group of Costa Rica, p. 119158 In Collins, L. S., and Coates, A. G. (eds.), A Paleobiotic Survey of the Caribbean Faunas from the Neogene of the Isthmus of Panama. Bulletins of American Paleontology, Special Volume, No. 357.Google Scholar
Budd, A. F., and Manfrino, C. M. 2001. Coral assemblages in Neogene to Recent cores from the Bahamas platform and their use in paleoenvironmental interpretation. SEPM Spec. Publ. (Concepts Sed. Geology), 70:4159.Google Scholar
Budd, A. F., and McNeill, D. F. 1998. Zooxanthellate Scleractinian Corals from the Bowden Shell Bed, SE Jamaica. Contributions to Tertiary and Quaternary Geology, 35:4965.Google Scholar
Budd, A. F., Petersen, R. A., and McNeill, D. F. 1998. Stepwise faunal change during evolutionary turnover: a case study from the Neogene of Curaçao, Netherlands Antilles. PALAIOS, 13:167185.CrossRefGoogle Scholar
Budd, A. F., Romano, S. L., Smith, N. D., and Barbeitos, M. S. 2010. Rethinking the phylogeny of scleractinian corals: A review of morphologic and molecular data. Integrative and Comparative Biology, 50:411427.CrossRefGoogle ScholarPubMed
Budd, A. F., Stemann, T. A., and Johnson, K. G. 1994. Stratigraphic distributions of genera and species of Neogene to Recent Caribbean reef corals. Journal of Paleontology, 68:951977.CrossRefGoogle Scholar
Budd, A. F., Stemann, T. A., and Stewart, R. H. 1992. Eocene Caribbean reef corals: a unique fauna from the Gatuncillo Formation of Panama. Journal of Paleontology, 66:570594.CrossRefGoogle Scholar
Budd, A. F., and Stolarski, J. 2009. Searching for new morphological characters in the systematics of scleractinian reef corals: Comparison of septal teeth and granules between Atlantic and Pacific Mussidae. Acta Zoologica, 90:142165.CrossRefGoogle Scholar
Budd, A. F., and Stolarski, J. 2011. Corallite wall and septal microstructure in scleractinian reef corals: Comparison of molecular clades within the family Faviidae. Journal of Morphology, 272:6688.CrossRefGoogle Scholar
Budd, A. F., and Wallace, C. C. 2008. First record of the Indo-Pacific reef coral genus Isopora in the Caribbean region: Two new species from the Neogene of Curaçao, Netherlands Antilles. Palaeontology, 51:13871402.CrossRefGoogle Scholar
Coates, A. G., McNeill, D. F., Aubrey, M-P., Berggren, W. A., and Collins, L. S. 2005. An introduction to the geology of the Bocas del Toro Archipelago, Panama. Caribbean Journal of Science, 41:374391.Google Scholar
Dowsett, H. J., and Robinson, M. M. 2009. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: A multi-proxy perspective: Philosophical Transactions of the Royal Society A, 367:109125.CrossRefGoogle ScholarPubMed
Edinger, E. N., and Risk, M. J. 1995. Preferential survivorship of brooding corals in a regional extinction. Paleobiology, 21:200219.CrossRefGoogle Scholar
Frost, S. H. 1977. Oligocene reef coral biogeography – Caribbean and western Tethys. Mémoires du Bureau de recherches géologiques et minières, 89:342352.Google Scholar
Frost, S. H., Harbour, J. L., Beach, D. K., Realini, M. J., and Harris, P. M. 1983. Oligocene reef tract development, southwestern Puerto Rico. Sedimenta, 9:1144.Google Scholar
Frost, S. H., and Langenheim, R. L. 1974. Cenozoic reef biofacies. Northern Illinois University Press, DeKalb, 388 pp.Google Scholar
Fukami, H., Budd, A. F., Paulay, G., Sole-Cava, A. M., Chen, C. A., Iwao, K., and Knowlton, N. 2004. Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature, 427:832835.CrossRefGoogle ScholarPubMed
Fukami, H., Chen, C. A., Budd, A. F., Collins, A. G., Wallace, C. C., Chuang, Y.-Y., Chen, C., Dai, C.-F., Iwao, K., Sheppard, C., and Knowlton, N. 2008. Mitochondrial and Nuclear Genes Suggest that Stony Corals are Monophyletic but Most Families of Stony Corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS One, 3:e3222.CrossRefGoogle Scholar
Haug, G. H., Tiedemann, R., Zahn, R., and Ravelo, C. 2001. Role of Panama uplift on oceanic freshwater balance. Geology, 29:207210.2.0.CO;2>CrossRefGoogle Scholar
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Et Al. 2007. Coral reefs under rapid climate change and ocean acidification: Science, 318:17371742.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., Budd, A. F., and Pandolfi, J. M. 1996. The shifting balance of natural communities? p. 89122 In Erwin, D., Jablonski, D. and Lipps, J. (eds.), Evolutionary Paleobiology: essays in honor of James W. Valentine, Univ. Chicago Press, Chicago.Google Scholar
Jackson, J. B. C., and Johnson, K. G. 2000. Life in the past few million years. Paleobiology, 26 (Supplement):221235.CrossRefGoogle Scholar
Jain, S., and Collins, L. S. 2007. Trends in Caribbean Paleoproductivity related to the Neogene closure of the Central American Seaway: Marine Micropaleontology, 63:5774.CrossRefGoogle Scholar
Johnson, K. G., 2001. Middle Miocene recovery of Caribbean reef corals: new data from the Tamana Formation, Trinidad. Journal of Paleontology, 75:513526.2.0.CO;2>CrossRefGoogle Scholar
Johnson, K. G., 2003. New data for old questions. Paleobiology, 29:1921.2.0.CO;2>CrossRefGoogle Scholar
Johnson, K. G., 2007. Reef-coral diversity in the Late Oligocene Antigua Formation and temporal variation of local diversity on Caribbean Cenozoic Reefs, p. 471491 In Hubmann, B. and Piller, W. E. (eds.), Fossil Corals and Sponges. Proceedings of the 9th International Symposium on Fossil Cnidaria and Porifera, Österr. Akad. Wiss., Schriftenr. Erdwiss. Komm. 17, Wien.Google Scholar
Johnson, K. G., Budd, A. F., and Stemann, T. A. 1995. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology, 21:5273.CrossRefGoogle Scholar
Johnson, K. G., and Kirby, M. X. 2006. The Emperador Limestone rediscovered: Early Miocene corals from the Culebra Formation, Panama. Journal of Paleontology, 80:283293.CrossRefGoogle Scholar
Johnson, K. G., Jackson, J. B. C., and Budd, A. F. 2008a. Caribbean reef development was independent of coral diversity over 28 million years. Science, 319:15211523.CrossRefGoogle ScholarPubMed
Johnson, K. G., Budd, A. F., Klaus, J. S., and McNeill, D. F. 2008b. The impact of fossils from the northern Dominican Republic on origination estimates for Miocene and Pliocene Caribbean reef corals. p. 253280 In Nehm, R. H. and Budd, A. F. (eds.), 2008. Evolutionary Stasis and Change in the Dominican Republic Neogene. Springer, New York, 310pp.CrossRefGoogle Scholar
Johnson, K. G., Sánchez-Villagra, M. R., and Aquilera, O. A. 2009. The Oligocene-Miocene transition on coral reefs in the Falcón Basin (NW Venezuela). PALAIOS, 24:5969.CrossRefGoogle Scholar
Kitathara, M. V., Cairns, S. D., Stolarski, J., Blair, D., and Miller, D. J. 2010. A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS One, 5:e11490.CrossRefGoogle Scholar
Klaus, J. S., and Budd, A. F. 2003. Comparison of Caribbean coral reef communities before and after Plio-Pleistocene faunal turnover: Analyses of two Dominican Republic reef sequences. PALAIOS, 18:321.2.0.CO;2>CrossRefGoogle Scholar
Klaus, J. S., Budd, A. F., Johnson, K. G., and McNeill, D. F. 2008. Assessing community change in Miocene to Pliocene coral assemblages of the northern Dominican Republic. p. 193224 In Nehm, R. H. and Budd AF, A. F. (eds.), 2008. Evolutionary Stasis and Change in the Dominican Republic Neogene. Springer, New York.CrossRefGoogle Scholar
Klaus, J. S., Lutz, B. P., McNeill, D. F., Budd, A. F., Johnson, K. G., and Ishman, S. E. 2011. Rise and fall of Pliocene free-living corals in the Caribbean and western Atlantic. Geology, 39:375378.CrossRefGoogle Scholar
McNeill, D. F., Budd, A. F., and Borne, P. F. 1997. An Earlier (Late Pliocene) First Appearance of the Reef-building Coral Acropora palmata: Stratigraphic and evolutionary implications. Geology, 25:891894.2.3.CO;2>CrossRefGoogle Scholar
McNeill, D. F., Coates, A. G., Budd, A. F., and Borne, P. F. 2000. Integrated paleontologic and paleomagnetic stratigraphy of the upper Neogene deposits around Limon, Costa Rica: A coastal emergence record of the Central American Isthmus. Geological Society of America Bulletin, 112:963981.2.0.CO;2>CrossRefGoogle Scholar
McNeill, D. F., Eberli, G. P., Lidz, B., Swart, P. K., and Kenter, J. A. M. 2001. Chronostratigraphy of a prograded carbonate platform margin: a record of dynamic slope sedimentation, western Great Bahama Bank. In Ginsburg, R.N. (ed.), Subsurface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank: Results of the Bahamas Drilling Project: Tulsa, Society for Sedimentary Geology, 70:101134.CrossRefGoogle Scholar
McNeill, D. F., Klaus, J. S., Budd, A. F., Lutz, B., and Ishman, S. 2011. Late Neogene Chronology and Sequence Stratigraphy of Mixed Carbonate-Siliciclastic Deposits of the Cibao Basin, Dominican Republic. Geological Society of America Bulletin, in press.CrossRefGoogle Scholar
O'Dea, A., Jackson, J. B. C., Fortunato, H., Smith, J. T., D'Croz, L., Johnson, K. G., and Todd, J. A. 2007. Environmental change preceded Caribbean extinction by 2 million years. Proceedings of the National Academy of Sciences USA, 104:55015506.CrossRefGoogle ScholarPubMed
Pandolfi, J. M., and Jackson, J. B. C. 2001. Community structure of Pleistocene coral reefs of Curaçao, Netherlands Antilles. Ecological Monographs, 71:4967.Google Scholar
Ravelo, A. C., Andreasen, D. H., Lyle, M., Lyle, A. O., and Wara, M. W. 2004. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature, 429:263267.CrossRefGoogle ScholarPubMed
Romano, S. L., and Cairns, S. D. 2000. Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bulletin of Marine Science, 67:10431068.Google Scholar
Romano, S. L., and Palumbi, S. R. 1996. Evolution of scleractinian corals inferred from molecular systematics. Science, 271:640642.CrossRefGoogle Scholar
Romano, S. L., and Palumbi, S. R. 1997. Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. Journal of Molecular Evolution, 45:397411.CrossRefGoogle ScholarPubMed
Shearer, T. L., Van Oppen, M. J. H., Roman, S. L., and Worheide, G. 2002. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology, 11:24752487.CrossRefGoogle ScholarPubMed
Shearer, T. L., and Coffroth, M. A. 2008. Barcoding corals: Limited by interspecific divergence, not intraspecific variation. Molecular Ecology Notes, 8:247255.CrossRefGoogle Scholar
Stemann, T. S. 2004. Reef corals of the White Limestone Group of Jamaica. Cainozoic Research, 3:83107.Google Scholar
Vaughan, T. W., and Wwells, J. W. 1943. Revision of the suborders, families and genera of the Scleractinia. Geological Society of America Special Papers 44, 363p.CrossRefGoogle Scholar
Von Der Heydt, A., and Dijkstra, H. A. 2005. Flow reorganizations in the Panama Seaway; a cause for the demise of Miocene corals? Geophysical Research Letters, 32: L02609.CrossRefGoogle Scholar
Veron, J. E. N. 2000. Corals of the World. Australian Institute of Marine Science, Townsville.Google Scholar
Wells, J. W. 1956. Scleractinia, p. F328—F443. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar