Skip to main content Accessibility help
×
Home

Biotic and Abiotic Forcing During the Transition to Modern Grassland Ecosystems: Evolutionary and Ecological Responses of Small Mammal Communities Over the Last 5 Million Years

  • David L. Fox (a1), Robert A. Martin (a2), Elizabeth Roepke (a3), Anne C. Fetrow (a3), Brenden Fischer-Femal (a3), Kevin T. Uno (a4), Kena Fox-Dobbs (a3), Kathryn E. Snell (a5), Andrew Haveles (a1) and Pratigya J. Polissar (a4)...

Abstract

Understanding the origin of modern communities is a fundamental goal of ecology, but reconstructing communities with durations of 103–106 years requires data from the fossil record. Early Pliocene to latest Pleistocene faunas and sediments in the Meade Basin and modern soils and rodents from the same area are used to examine the role of environmental change in the emergence of the modern community. Paleoenvironmental proxies measured on modern surface soils and paleosols are described, and faunal dynamics of fossil rodents are discussed. Mean annual precipitation (MAP) was estimated from elemental concentrations and magnetic properties, and warm-season temperature and δ18O of soil water was estimated using carbonate isotope paleothermometry on pedogenic nodules. MAP and temperature estimates from paleosols exhibit no short-term variability, no long-term trends, and generally bracket modern values. Estimated soil water δ18O values increased through time, suggesting aridification played a role in the evolution of the regional grassland ecosystem. Carbon isotope analyses of biomarkers are used to examine the abundance of C4 grasses, which suggest more C4 biomass and more variability in C4 biomass than carbonate proxies. Rodent species richness remained constant due to balanced rates of extinction and immigration, both of which show episodic spikes consistent with a balance between forcing mechanisms that result in equilibrium on long time scales. Overall, these results suggest that different mechanisms of faunal change may be acting at different time scales, although the stratigraphic resolution of paleoenvironmental proxies needs to be increased, and body size and dietary distributions of rodents need to be determined before which processes of change are most important can be decided.

Copyright

References

Hide All
Alroy, J., Koch, P. L., and Zachos, J. C. 2000. Global climate change and North American mammalian evolution. Paleobiology, 26:259288.
Affek, H. P. 2012. Clumped isotope paleothermometry: Principles, applications, and challenges, p. 101114 In Ivany, L. C. and Huber, B. (eds.), Reconstructing Earth's Deep-Time Climate–The State of the Art in 2012. Paleontological Society Papers, 18.
Barnosky, A. D. 2001. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the Northern Rocky Mountains. Journal of Vertebrate Paleontology, 21:172185.
Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., Maguire, K. C., Mersey, B., and Ferrer, E. A. 2011. Has the Earth's sixth mass extinction arrived? Nature, 471:5157.
Barry, J. C., Morgan, M. E., Flynn, L. J., Pilbeam, D., Jacobs, L. L., Lindsay, E. H., Mahmood Raza, S., and Solounias, N. 1995. Patterns of faunal turnover and diversity in the Neogene Siwaliks of northern Pakistan. Palaeogeography, Palaeoclimatology and Paleaoecology, 115:209226.
Breecker, D. O., Sharp, Z. D., and McFadden, L. D. 2009. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geological Society of America Bulletin, 121:630640.
Brett, C. E., and Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to middle Devonian faunas in the Appalachian Basin, p. 285315 In Erwin, D. H. and Anstey, R. L. (eds.), New Approaches to Speciation in the Fossil Record. Columbia University Press, New York.
Burgoyne, T. W., and Hayes, J. M. 1998. Quantitative production of H2 by pyrolysis of gas chromatographic effluents. Analytical Chemistry, 70:51365141.
Castañeda, I. S., Werne, J. P., Johnson, T. C., and Filley, T. R. 2009. Late Quaternary vegetation history of southeast Africa: the molecular isotopic record from Lake Malawi. Palaeogeography, Palaeoclimatology, Palaeoecology, 275:100112.
Eglinton, G., and Hamilton, R. J. 1967. Leaf epicuticular waxes. Science, 156:13221335.
Eiler, J. M. 2007. “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters, 262:309327.
Eiler, J. M., and Schauble, E. 2004. 13C18O16O in Earth's atmosphere. Geochimica Et Cosmochimica Acta, 68:47674777.
Feakins, S. J., Levin, N. E., Liddy, H. M., Sieracki, A., Eglinton, T. I., and Bonnefille, R. 2013. Northeast African vegetation change over 12 my. Geology, 41:295298.
Finarelli, J. A., and Badgley, C. 2010. Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate. Proceedings of the Royal Society B-Biological Sciences, 1098:16.
Fox, D. L, and Koch, P. L. 2003. Tertiary history of C4 biomass in the Great Plains, U.S.A. Geology, 31:809812.
Fox, D. L., and Koch, P. L. 2004. Carbon and oxygen isotopic variability in Neogene paleosol carbonates: constraints on the evolution of the C4-dominated grasslands of the Great Plains, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 207:305329.
Fox, D. L., Honey, J. G., Martin, R. A., and Peláez-Campomanes, P. 2012a. Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Oxygen isotopes and paleoclimate during the evolution of C4-dominated grasslands. Geological Society of America Bulletin, 124:431443.
Fox, D. L., Honey, J. G., Martin, R. A., and Peláez-Campomanes, P. 2012b. Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Carbon isotopes and the evolution of C4-dominated grasslands. Geological Society of America Bulletin, 124:444462.
Freeman, K. H., and Colarusso, L. A. 2001. Molecular and isotopic records of C4 grassland expansion in the late Miocene. Geochimica et Cosmochimica Acta, 65:14391454.
Geiss, C. E., Egli, R., and Zanner, C. W. 2008. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. Journal of Geophysical Research, 113. doi: 10.1029/2008JB005669.
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W. F., Schauble, E. A., Schrag, D., and Eiler, J. M. 2006. 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70:14391456.
Hayes, J. M., Freeman, K. H., Popp, B. N., and Hoham, C. H. 1990. Compound-specific isotopic analyses; a novel tool for reconstruction of ancient biogeochemical processes. Organic Geochemistry, 16:11151128.
Heslop, D., and Roberts, A. P. 2013. Calculating uncertainties on predictions of palaeoprecipitation from the magnetic properties of soils. Global and Planetary Change, 110:379385 doi:10.1016/j.gloplacha.2012.11.013.
Honey, J. G., Peláez-Campomanes, P., and Martin, R. A. 2005. Stratigraphic framework of early Pliocene localities along the north bank of the Cimarron River, Meade County, Kansas. Ameghiniana, 42:461472.
Hibbard, C. W. 1941. The Borchers Fauna, a new Pleistocene interglacial fauna from Meade County, Kansas. Transactions of the Kansas Academy of Sciences, 40:239265.
Hibbard, C. W., and Taylor, D. W. 1960. Two late Pleistocene faunas from southwestern Kansas. Contributions of the Museum of Paleontology, University of Michigan, 56:1223.
Holbrook, S. J. 1977. Rodent faunal turnover and prehistoric community stability in northwestern New Mexico. American Naturalist, 111:11951208.
Hough, B. G., Fan, F., and Passey, B. H. 2014. Calibration of the clumped isotope geothermometer in soul carbonate in Wyoming and Nebraska, USA: Implications for paleoelevation and paleoclimatic reconstruction. Earth and Planetary Science Letters, 391:110120.
Huntington, K. W., Eiler, J. M., Affek, H. P., Guo, W., Bonifacie, M.; Yeung, L. Y., Thiagarajan, N., Passey, B., Tripati, A., Daeron, M., and Came, R. 2009. Methods and limitations of ‘clumped’ CO2 isotope Δ47 analysis by gas-source isotope ratio mass spectrometry. Journal of Mass Spectrometry, 44:13181329.
Hutchinson, G. E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals. American Naturalist, 93:145259.
Izett, G. A., and Honey, J. G. 1995. Geologic map of the Irish Flats NE quadrangle, Meade County, Kansas. United States Geological Survey Miscellaneous Investigations Series Map I-2498, 1:24,000.
Jaeger, R. G. 1974. Competitive exclusions: comments on survival and extinction of species. BioScience, 24:3339.
MacArthur, R. H., and Wilson, E. O. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, N. J.
Martin, R. A. 1986. Energy, ecology and cotton rat evolution. Paleobiology, 12:370382.
Martin, R. A. 1996. Tracking mammal body size distributions in the fossil record: a preliminary test of the ‘rule of limiting similarity.’ Acta Zoologica Cracoviensia, 39:321328.
Martin, R. A., and Fairbanks, K. B. 1999. Cohesion and survivorship of a rodent community during the past 4 million years in southwestern Kansas. Evolutionary Ecology Research, 1:2148.
Martin, R. A., and Peláez-Campomanes, P. 2014. Diversity dynamics of the Late Cenozoic rodent community from south-western Kansas: the influence of historical processes on community structure. Journal of Quaternary Science, 29:221231.
Martin, R. A., Peláez-Campomanes, P., and Honey, J. G. 2000. The Meade Basin rodent project: a progress report. Paludicola, 3:132.
Martin, R. A., Peláez-Campomanes, P., and Mecklin, C. 2012. Patterns of size change in late Neogene pocket gophers from the Meade Basin of Kansas and Oklahoma. Historical Biology, 24:537545.
Martin, R. A., Peláez-Campomanes, P., Honey, J. G., Fox, D. L., Zakrzewski, R. J., Albright, L. B., Lindsay, E. H., Opdyke, N. D., and Goodwin, H. T. 2008. Rodent community change at the Pliocene–Pleistocene transition in southwestern Kansas and identification of the Microtus immigration event on the Central Great Plains. Palaeogeography, Palaeoclimatology, Palaeoecology, 267:196207.
Mccune, A. R. 1982. On the fallacy of constant extinction rates. Evolution, 36:610614.
Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., and Eiler, J. M. 2010. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences of the United States of America, 107:1124511249.
Pimm, S. L., Russell, G. J., Gittleman, J. L., and Brooks, T. M. 1995. The future of biodiversity. Science, 269:347350.
Pimm, S. L., Raven, P., Peterson, A., Şekercioğlu, Ç. H., and Ehrlich, P. R. 2006. Human impacts on the rates of recent, present and future bird extinctions. Proceedings of the National Academy of Science, 103:1094110946.
Polissar, P. J., Freeman, K. H., Rowley, D. B., McInerney, F. A., and Currie, B. S. 2009. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth and Planetary Science Letters, 287:6476.
Quade, J., Eiler, J., Daëron, M., and Achyuthan, H. 2013. The clumped isotope geothermometer in soil and paleosol carbonate. Geochimica Et Cosmochimica Acta, 105:92107.
Retallack, G. J. 2007. Cenozoic paleoclimate on land in North America. The Journal of Geology, 115:271294 doi: 10.1086/512753.
Sheldon, N. D., and Tabor, N. J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95:152 doi:10.1016/j.earscirev.2009.03.004.
Sheldon, N. D., Retallack, G. J., and Tanaka, S. 2002. Geochemical climofunctions from North American soils and application to paleosols across the Eocene–Oligocene boundary in Oregon. Journal of Geology, 110:687696.
Smith, F. A., Wing, S. L., and Freeman, K. H. 2007. Magnitude of the carbon isotope excursion at the Paleocene–Eocene thermal maximum: the role of plant community change. Earth and Planetary Science Letters, 262:5065.
Snell, K. E., Koch, P. L., Druschke, P., Foreman, B. Z., and Eiler, J. M. 2013. High elevation of the ‘Nevadaplano’ during the Late Cretaceous. Earth and Planetary Science Letters, 386:5263.
Swart, P. K., Burns, S. J., and Leder, J. J. 1991. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chemical Geology, 86:8996.
Tipple, B. J., and Pagani, M. 2010. A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record: implications for C4 grasslands and hydrologic cycle dynamics. Earth and Planetary Sciences Letters, 299:250262.
van Valen, L. 1973. A new evolutionary law. Evolutionary Theory, 1:130.
Vrba, E. S. 1993. Turnover-pulses, the Red Queen, and related topics. American Journal of Science, 293-A:418452.
Vrba, E. S. 1995. On the connections between paleoclimate and evolution, p. 2445 In Vrba, E. S., Denton, G. H., Partridge, T C., and Burckle, L. H. (eds.), Paleoclimate and Evolution, with Emphasis on Human Origins. Yale University Press, New Haven.
Wang, Z. G., Schauble, E. A., and Eiler, J. M. 2004. Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochimica et Cosmochimica Acta, 68:47794797.
Zakrzewski, R. J. 1975. Pleistocene stratigraphy and paleontology in western Kansas: the state of the art, 1974, p. 121128 In Smith, G. R. and Friedland, N. E. (eds.), Studies on Cenozoic Paleontology and Stratigraphy in Honor of Claude W. Hibbard. University of Michigan, Papers on Paleontology 12.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed