Skip to main content Accessibility help
×
Home

Molecules, Morphology, Fossils and the Origination and Extinction Dynamics of Scleractinian Corals

Published online by Cambridge University Press:  21 July 2017

Marcos S. Barbeitos
Affiliation:
Department of Zoology, Institute of Biosciences, University of Sao Paulo, Rua do Matão, Trav. 14, 05508-900, Sao Paulo, SP, Brazil
Get access

Abstract

The history of Scleractinian corals, richly documented by the fossil record, is one of complex dynamics linked to the dynamics of coral reefs themselves. In spite of all the waxing and waning of marine biodiversity throughout the post-Paleozoic, scleractinians have remained remarkably resilient as a lineage and have traversed two mass extinctions and repeated episodes of global change before becoming the chief builders of modern coral reefs. Understanding this history becomes all the more relevant in face of the current human driven coral reef biodiversity crisis. The advent of molecular phylogenetics has changed our perspective of those dynamics because it has uncovered pervasive morphological convergence in traditionally used taxonomic characters, revealing that the current classification is highly artificial. Taxonomy not only obscures important patterns, but also introduces artifacts into estimates of origination and extinction obtained directly from the fossil record. I present a brief review of the impact of molecular phylogenetics on the current understanding of coral evolution, with emphasis on the recently uncovered phyletic link between photosymbiotic, reef dwelling and azooxanthellate, deepwater coral biota. Then, I discuss the role of molecular-based techniques in a future research agenda of the evolutionary dynamics of the order. The greatest challenge for the future is the re-assessment of morphological characters from a cladistic perspective so that extinct and extant species are integrated in a unified phylogenetic framework, allowing rigorous testing of hypotheses on the fascinating biodiversity dynamics of the order.

Type
Research Article
Copyright
Copyright © 2011 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.

References

Åkerborg, Ö., Sennblad, B., and Lagergren, J. 2008. Birth-death prior on phylogeny and speed dating. BMC Evolutionary Biology, 8:77.CrossRefGoogle ScholarPubMed
Alfaro, M. E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D. L., Carnevale, G., and Harmon, L. J. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences, 106(32): 1341013414.CrossRefGoogle ScholarPubMed
Arthur, W. 2002. The emerging conceptual framework of evolutionary developmental biology. Nature, 415(6873): 757764.CrossRefGoogle Scholar
Barbeitos, M. S., Romano, S. L., and Lasker, H. R. 2010. Repeated loss of coloniality and symbiosis in scleractinian corals. Proceedings of the National Academy of Sciences, 107(26):1187711882.CrossRefGoogle ScholarPubMed
Beilstein, M. A., Nagalingum, N. S., Clements, M. D., Manchester, S. R., and Mathews, S. 2010. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 107(43): 1872418728.CrossRefGoogle Scholar
Beklemishev, W. N. 1969. Colonies of bilateria and general principles of development of the colonial habit in multicellular animals, p. 430478 In Kabata, Z. (ed.), Principles of comparative anatomy of invertebrates - Promorphology. Volume 1. Oliver and Boyd, Edinburgh.Google Scholar
Bergsten, J. 2005. A review of long-branch attraction. Cladistics, 21(2):163193.CrossRefGoogle Scholar
Bottjer, D. J. 1980. Branching morphology of the reef coral Acropora cervicornis in different hydraulic regimes. Journal of Paleontology, 54(5):11021107.Google Scholar
Brown, R. P., and Yang, Z. 2010. Bayesian dating of shallow phylogenies with a relaxed clock. Systematic Biology, 59(2):119131.CrossRefGoogle ScholarPubMed
Brugler, M. R., and France, S. C. 2007. The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria:Anthozoa:Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. Molecular Phylogenetics and Evolution, 42(3):776788.CrossRefGoogle Scholar
Bruno, J. F., and Edmunds, P. J. 1997. Clonal variation for phenotypic plasticity in the coral Madracis mirabilis . Ecology, 78:21772190.CrossRefGoogle Scholar
Bruno, J. F., and Edmunds, P. J. 1998. Metabolic consequences of phenotypic plasticity in the coral Madracis mirabilis (Duchassing and Michelloti): the effect of water flow and morphology on aggregate respiration. Journal of Experimental Marine Biology and Ecology, 229:187195.CrossRefGoogle Scholar
Budd, A. F. 2009. Towards a new phylogeny and classification system for scleractinian corals (Meeting Report). The Palaeontological Association Newsletter 72:4250.Google Scholar
Budd, A. F., and Johnson, K. G. 1999. Origination preceding extinction during late cenozoic turnover of Caribbean reefs. Paleobiology, 25(2):188200.CrossRefGoogle Scholar
Budd, A. F., and Stolarski, J. 2009. Searching for new morphological characters in the systematics of scleractinian reef corals: comparison of septal teeth and granules between Atlantic and Pacific Mussidae. Acta Zoologica, 90(2):142165.CrossRefGoogle Scholar
Budd, A. F., Romano, S. L., Smith, N. D., and Barbeitos, M. S. 2010. Rethinking the phylogeny of scleractinian corals: a review of morphological and molecular data. Integrative and Comparative Biology, 50(3):411427.CrossRefGoogle ScholarPubMed
Buddemeier, R. W., and Fautin, D. G. 1996. Global CO2 and evolution among the Scleractinia. Bulletin de l'Institut Oceanographique, 14(4):3338.Google Scholar
Cairns, S. D. 1991. A revision of the ahermatypic Scleractinia of the Galapagos and Cocos islands. Smithsonian Institution Press, Washington DC, 504, 44 p.Google Scholar
Cairns, S. D. 1999. Species richness of recent scleractinia. Atoll Research Bulletin, 459:146.CrossRefGoogle Scholar
Cano, R. J., Poinar, H. N., Pieniazek, N. J., Acra, A., and Poinar, G. O. 1993. Amplification and sequencing of DNA from a 120–135-million-year-old weevil. Nature, 363(6429):536538.CrossRefGoogle ScholarPubMed
Cartwright, P., Halgedahl, S. L., Hendricks, J. R., Jarrard, R. D., Marques, A. C., Collins, A. G., and Lieberman, B. S. 2007. Exceptionally preserved jellyfishes from the Middle Cambrian. PLoS ONE, 2(10):e1121.CrossRefGoogle ScholarPubMed
Chen, C. A., Odorico, D. M., Ten Lohuis, M., Veron, J. E. N., and Miller, D. J. 1995. Systematic relationships within the Anthozoa (Cnidaria:Anthozoa) using the 5′-end of the 28S rDNA. Molecular Phylogenetics and Evolution, 4(2):175183.CrossRefGoogle ScholarPubMed
Chen, C. A., Wallace, C. C., and Wolstenholme, J. 2002. Analysis of the mitochondrial 12s rRNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals. Molecular Phylogenetics and Evolution, 23:137149.CrossRefGoogle Scholar
Coates, A. G., and Jackson, J. B. C. 1985. Morphological themes in the evolution of clonal and aclonal marine invertebrates, p. 67106 In Jackson, J. B. C., Buss, L. W., and Cook, R. E. (eds.), Population biology and evolution of clonal organisms. Yale University Press, New Haven.Google Scholar
Coates, A. G., and Jackson, J. B. C. 1987. Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology, 13(4):363378.CrossRefGoogle Scholar
Coates, A. G., and Oliver, W. A. 1973. Coloniality in Zoantharian corals, p. 327 In Boardman, R. S., Cheetam, A., and Oliver, W. A. (eds.), Animal colonies - Development and function through time. Dowden, Hutchinson & Ross, Stroudsburg.Google Scholar
Coddington, J. A. 1990. Ontogeny and homology in the male palpus of orb-weaving spiders and their relatives, with comments on phylogeny (Araneoclada:Araneoidea, Deinopoidea), Smithsonian Contributions To Zoology 496(4), Washington, D.C., 52 p.Google Scholar
Connel, J. H. 1979. Tropical rain forests and coral reefs as open non-equilibrium systems, p. 141163 In Anderson, R. M., Turner, H. D., and Taylor, L. R. (eds.), Population dynamics. Blackwell, Oxford.Google Scholar
Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science, 199:13021310.CrossRefGoogle ScholarPubMed
Connell, J. H., Hughes, T. P., and Wallace, C. C. 1997. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecological Monographs, 67(4):461488.CrossRefGoogle Scholar
Connell, J. H., Hughes, T. P., Wallace, C. C., Tanner, J. E., Harms, K. E., and Kerra, A. M. 2004. A long-term study of competition and diversity of corals. Ecological Monographs, 74(2):179210.CrossRefGoogle Scholar
Cuif, J.-P., Lecointre, G., Perrin, C., Tillier, A., and Tillier, S. 2003. Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zoologica Scripta, 32(5):459473.CrossRefGoogle Scholar
Daly, M., Fautin, D. G., and Cappola, V. A. 2003. Systematics of the Hexacorallia (Cnidaria: Anthozoa). Zoological Journal of the Linnean Society, 139:419437.CrossRefGoogle Scholar
Dawson, J. P. 2002. Biogeography of azooxanthellate corals in the Caribbean and surrounding areas. Coral Reefs, 21:2740.CrossRefGoogle Scholar
de la Torre-Bárcena, J. E., Kolokotronis, S.-O., Lee, E. K., Stevenson, D. W., Brenner, E. D., Katari, M. S., Coruzzi, G. M., and Desalle, R. 2009. The impact of outgroup choice and missing data on major seed plant phylogenetics using genome-wide EST data. PLoS ONE, 4(6):e5764.CrossRefGoogle Scholar
Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5):e88.CrossRefGoogle Scholar
Drummond, A. J., Ho, S. Y. W., Rawlence, N., and Rambaut, A. 2007. A rough guide to BEAST 1.4, Edinburgh.Google Scholar
Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., Seaver, E., Rouse, G. W., Oobst, M., Edgecombe, G. D., Sorensen, M. V., Haddock, S. H. D., Schmidt-Rhaesa, A., Okusu, A., Kristensen, R. M., Wheeler, W. C., Martindale, M. Q., and Giribet, G. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452(7188):745749.CrossRefGoogle ScholarPubMed
Eldredge, N. 1974. Stability, diversity, and speciation in Paleozoic Epeiric seas. Journal of Paleontology, 48(3):541548.Google Scholar
Ezaki, Y. 1998. Paleozoic Scleractinia; progenitors or extinct experiments? Paleobiology, 24(2):227234.Google Scholar
Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27(4):401410.CrossRefGoogle Scholar
Fine, M., and Tchernov, D. 2007. Scleractinian coral species-survive and recover from decalcification. Science, 315(5820): 1811.CrossRefGoogle ScholarPubMed
Foster, A. B. 1983. The relationship between corallite morphology and colony shape in some massive reef corals. Coral Reefs, 2:1925.CrossRefGoogle Scholar
Fukami, H., Budd, A. F., Paulay, G., Sole-Cava, A., Allen Chen, C., Iwao, K., and Knowlton, N. 2004. Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature, 427(6977):832835.CrossRefGoogle ScholarPubMed
Fukami, H., Chen, C. A., Budd, A.F., Collins, A., Wallace, C., Chuang, Y.-Y., Chen, C., Dai, C.-F., Iwao, K., Sheppard, C., and Knowlton, N. 2008. Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS ONE, 3(9):e3222.CrossRefGoogle Scholar
Gauthier, J., Kluge, A. G., and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics, 4(2): 105209.CrossRefGoogle Scholar
Goreau, T. F. 1959. The ecology of Jamaican coral reefs I. species composition and zonation. Ecology, 40(1):6790.CrossRefGoogle Scholar
Graybeal, A. 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology, 47(1):917.CrossRefGoogle ScholarPubMed
Grottoli, A. G., Rodrigues, L. J., and Palardy, J. E. 2006. Heterotrophic plasticity and resilience in bleached corals. Nature, 440(7088): 11861189.CrossRefGoogle ScholarPubMed
Gutierrez, G., and Marin, A. 1998. The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems. Molecular Biology and Evolution, 15(7):926929.CrossRefGoogle Scholar
Halaynch, K. M. 1998. Lagomorphs misplaced by more characters and fewer taxa. Systematic Biology, 47(1):138146.CrossRefGoogle Scholar
Hallock, P. 1997. Reefs and reefs limestones in earth history, p. 4467 In Birkeland, C. (ed.), Life and death of coral reefs. Chapman and Hall.Google Scholar
Harrison, P. L., and Wallace, C. C. 1990. Reproduction, dispersal and recruitment of scleractinian corals, p. 133207 In Dubinsky, Z. (ed.), Ecosystems of the World, Coral Reefs. Volume 25. Elsevier, Amsterdam.Google Scholar
Hennig, W. 1966. Phylogenetic Systematics (English Translation). University of Illinios Press, Urbana, 280 p.Google Scholar
Hillis, D. M. 1996. Inferring complex phytogenies. Nature, 383(6596): 130131.CrossRefGoogle Scholar
Hillis, D. M. 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias. systematic biology, 47(1):38.Google Scholar
Holder, M. T., Sukumaran, J., and Lewis, P. O. 2008. A justification for reporting the majority-rule consensus tree in Bayesian phylogenetics. Systematic Biology, 57(5):814821.CrossRefGoogle ScholarPubMed
Huang, D., Meier, R., Todd, P. A., and Chou, L. M. 2009. More evidence for pervasive paraphyly in scleractinian corals: systematic study of Southeast Asian Faviidae (Cnidaria; Scleractinia) based on molecular and morphological data. Molecular Phylogenetics and Evolution, 50(1):102116.CrossRefGoogle ScholarPubMed
Hughes, T. P., Ayre, D. J., and Connel, J. H. 1992. The evolutionary ecology of corals. Trends in Ecology and Evolution, 7(9):292295.CrossRefGoogle ScholarPubMed
Jablonski, D. 2005. Evolutionary innovations in the fossil record: the intersection of ecology, development, and macroevolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304B(6):504519.CrossRefGoogle Scholar
Jablonski, D. 2008a. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences, 105 (Supplement 1):1152811535.CrossRefGoogle ScholarPubMed
Jablonski, D. 2008b. Species selection: theory and data. Annual Review of Ecology, Evolution, and Systematics, 39(1):501524.CrossRefGoogle Scholar
Jablonski, D., and Bottjer, D. J. 1991. Environmental patterns in the origins of higher taxa: the post-paleozoic fossil record. Science, 252(5014):18311833.CrossRefGoogle ScholarPubMed
Jablonski, D., JSepkoski, . J., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of phanerozoic shelf communities. Science, 222(4628):11231125.CrossRefGoogle ScholarPubMed
Jackson, J. B. C. 1977. Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. American Naturalist, 111(980):743767.CrossRefGoogle Scholar
Jackson, J. B. C. 1979. Morphological strategies of sessile animals, p. 499555 In Larwood, G. and Rosen, B. (eds.), Biology and systematics of colonial organisms. Academic Press, London.Google Scholar
Jackson, J. B. C., and Hughes, T. P. 1985. Adaptive strategies of coral-reef invertebrates. American Scientist, 75:265274.Google Scholar
Jenner, R. A. 2004. Accepting partnership by submission? Morphological phylogenetics in a molecular millennium. Systematic Biology, 53(2):333359.CrossRefGoogle Scholar
Johnson, K. G., Budd, , and Stemann, T. A. 1995. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology, 21(1):5273.CrossRefGoogle Scholar
Johnson, K. G., Jackson, J. B. C., and Budd, A. F. 2008. Caribbean reef development was independent of coral diversity over 28 million years. Science, 319(5869):15211523.CrossRefGoogle ScholarPubMed
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1998. Evolutionary significance of differential species longevity in Osagean-Meramecian (Mississippian) crinoid clades. Paleobiology, 24(2):155176.Google Scholar
Kiessling, W. 2005. Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature, 433(7024):410413.CrossRefGoogle ScholarPubMed
Kiessling, W., and Aberhan, M. 2007. Geographical distribution and extinction risk: lessons from Triassic-Jurassic marine benthic organisms. Journal of Biogeography, 34(9):14731489.CrossRefGoogle Scholar
Kiessling, W., and Baron-Szabo, R. C. 2004. Extinction and recovery patterns of scleractinian corals at the Cretaceous-Palaeoecology, 214:195223.Google Scholar
Kiessling, W., Simpson, C., and Foote, M. 2010. Reefs as cradles of evolution and sources of biodiversity in the phanerozoic. Science, 327(5962):196198.CrossRefGoogle Scholar
Kitahara, M. V., Cairns, S. D., Stolarski, J., Blair, D., and Miller, D. J. 2010. A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS ONE, 5(7):e11490.CrossRefGoogle ScholarPubMed
Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J.-P., Langdon, C., and Opdyke, B. N. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 284(5411):118120.CrossRefGoogle Scholar
Klingenberg, C. P. 1998. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biological Review, 73:79123.CrossRefGoogle ScholarPubMed
Kuzmicheva, E. I. 1986. The evolution of colonialism in Scleractinia. Paleontological Journal, 20(4):110.Google Scholar
Lasker, H. R. 1980. Sediment rejection by reef corals: the roles of behaviour and morphology in Montastrea cavernosa (Linnaeus). Journal of Experimental Marine Biology and Ecology, 47:7780.CrossRefGoogle Scholar
Lepage, T., Bryant, D., Philippe, H., and Lartillot, N. 2007. A general comparison of relaxed molecular clock models. Molecular Biology and Evolution, 24(12):26692680.CrossRefGoogle ScholarPubMed
Lewis, P. O. 2001. A likelihood approach to estimate phytogeny from discrete morphological character data. Systematic Biology, 50(6):913925.CrossRefGoogle Scholar
Liow, L. H., Quental, T. B., and Marshall, C. R. When can decreasing diversification rates be detected with molecular phylogenies and the fossil record? Systematic Biology 59(6):646659.CrossRefGoogle ScholarPubMed
Manos, P. S., Soltis, P. S., Soltis, D. E., Manchester, S. R., Oh, S.-H., Bell, C. D., Dilcher, D. L., and Stone, D. E. 2007. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Systematic Biology, 56(3):412430.CrossRefGoogle Scholar
Marshall, A. T. 1996. Calcification rates in corals. Science, 274(5284):117118.CrossRefGoogle ScholarPubMed
McShea, D. W., and Venit, E. P. 2002. Testing for bias in the evolution of coloniality: a demonstration in cyclostome bryozoans. Paleobiology, 28(3):308327.2.0.CO;2>CrossRefGoogle Scholar
Medina, M., Ccollins, A. G., Takaoka, T. L., Kuehl, J. V., and Boore, J. L. 2006. Naked corals: skeleton loss in Scleractinia. Proceedings of the National Academy of Sciences, 103(24):90969100.CrossRefGoogle ScholarPubMed
Miller, K. J. 1994. Morphological variation in the coral genus Platygyra: Environmental influences and taxonomic implications. Marine Ecology Progress Series, 110:1928.CrossRefGoogle Scholar
Moseley, H. N. 1880. Deep-sea dredging and life in the deep sea. Nature Biotechnology, 21:543547.Google Scholar
Muscatine, L., Goiran, C., Land, L., Jaubert, J., Cuif, J.-P., and Allemand, D. 2005. Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton. Proceedings of the National Academy of Sciences, 102(5):15251530.CrossRefGoogle ScholarPubMed
Oren, U., Benayahu, Y., Lubinevsky, H., and Loya, Y. 2001. Colony integration during regeneration in the stony coral Favia favus . Ecology, 82(3):802813.CrossRefGoogle Scholar
Organ, C. L., Schweitzer, M. H., Zheng, W., Freimark, L. M., Cantley, L. C., and Asara, J. M. 2008. Molecular phylogenetics of mastodon and Tyrannosaurus rex . Science, 320(5875):499.CrossRefGoogle ScholarPubMed
Pagel, M., and Meade, A. 2006. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. American Naturalist, 167(6):808825.Google ScholarPubMed
Pagel, M., Meade, A., and Barker, D. 2004. Bayesian estimation of ancestral character states on phylogenies. Systematic Biology, 53(5):673684.CrossRefGoogle ScholarPubMed
Pandolfi, J. M. 1988. Heterochrony in colonial marine animals, p. 135158 In McKinney, M. L. (ed.), Heterochrony in evolution. Plenum Press, New York.CrossRefGoogle Scholar
Patarnello, T., Volckaert, F. A. M. J., and Castilho, R. 2007. Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Molecular Ecology, 16(21):44264444.CrossRefGoogle ScholarPubMed
Patterson, C., and Smith, A. B. 1987. Is the periodicity of extinctions a taxonomic artefact? Nature, 330(6145):248251.CrossRefGoogle Scholar
Philippe, H., Brinkmann, H., Lavrov, D. V., Littlewood, D. T. J., Manuel, M., Wörheide, G., and Baurain, D. 2011. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol, 9(3):e1000602.CrossRefGoogle ScholarPubMed
Pollock, D. D., Zwickl, D. J., McGuire, J. A., and Hillis, D. M. 2002. Increased taxon sampling is advantageous for phylogenetic inference. Systematic Biology, 51(4):664671.CrossRefGoogle ScholarPubMed
Quental, T. B., and Marshall, C. R. 2010. Diversity dynamics: molecular phylogenies need the fossil record. Trends in Ecology & Evolution (Personal edition), 25(8):434441.CrossRefGoogle ScholarPubMed
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinction in the fossil record. Paleobiology, 14(2):109125.CrossRefGoogle Scholar
Romano, S. L., and Cairns, S. D. 2000. Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bulletin of Marine Science, 67(3):10431068.Google Scholar
Romano, S. L., and Palumbi, S. R. 1996. Evolution of scleractinian corals inferred from molecular systematics. Science, 271(5249):640642.CrossRefGoogle Scholar
Rosen, B. R. 1986. Modular growth and form of corals: a matter of metamers? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 313(1159):115142.CrossRefGoogle Scholar
Rosen, B. R. 2000. Algal symbiosis, and the collapse and recovery of reef communities: Lazarus corals across the K–T boundary, p. 164180 In Culver, S. J. and Rawson, P. F. (eds.), Biotic Response to Global Change: The Last 145 Million Years. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Rosen, B. R., and Turnšek, D. 1989. Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary. Memoir of the Association of Australasian Palaeontologists, 8:355370.Google Scholar
Schierwater, B., Eitel, M., Jakob, W., Osigus, H.-J., Hadrys, H., Dellaporta, S. L., Kolokotronis, S.-O., and Desalle, R. 2009. Concatenated analysis sheds light on early metazoan evolution and fuels a modern “urmetazoon” hypothesis. PLoS Biol, 7(1):e1000020.CrossRefGoogle Scholar
Scotland, R. W., Olmstead, R. G., and Bennet, J. R. 2003. Phylogeny reconstruction: the role of morphology. Systematic Biology, 52(4):539548.CrossRefGoogle ScholarPubMed
Sebens, K. P. Adaptive responses to water flow: morphology, energetics and distribution of reef corals. Proceedings of the 8th international coral reef symposium, Panama, 2:10531058.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363:1560.Google Scholar
Shearer, T. L., Van Oppen, M. J. H., Romano Sandra, S. L., and Wörheide, G. 2002. Slow mithocondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology 11(12):24752487.CrossRefGoogle Scholar
Simpson, C., Kiessling, , Mewis, H., Baron-Szabo, R. C., and Müller, J. 2011. Evolutionary diversification of reef corals: a comparison of the molecular and fossil records. Evolution:no-no.Google Scholar
Stanley, G. D. and Helmle, K. P. 2010. Middle-Triassic coral growth bands and their implication for photosymbiosis. Palaios, 25(12):754763.CrossRefGoogle Scholar
Stanley, G. D. 2006. Photosymbiosis and the evolution of modern coral reefs. Science, 312(5775):857858.CrossRefGoogle ScholarPubMed
Stanley, G. D. 1988. The history of early Mesozoic reef communities: a three-step process. Palaios, 3(2):170183.Google Scholar
Stanley, G. D. 2003. The evolution of modern corals and their early history. Earth-Science Reviews, 60(3–4): 195225.CrossRefGoogle Scholar
Stanley, G. D. and Cairns, S. D. 1988. Constructional azooxanthellate coral communities: an overview with implications for the fossil record. Palaios, 3(2):233242.Google Scholar
Stanley, G. D. and Fautin, D. G. 2001. The origin of modern corals. Science, 291 (5510):19131914.CrossRefGoogle Scholar
Stanley, G. D. and Swart, P. K. 1995. Evolution of the coral-zooxanthenllae symbiosis during the Triassic: a geochemical approach. Paleobiology, 21(2):179199.CrossRefGoogle Scholar
Stolarski, J. 1995. Ontogenetic development of the thecal structures in caryophylliine scleractinian corals. Acta Palaeontologica Polonica, 40(1):1944.Google Scholar
Stolarski, , Meibom, J. A., Przenioslo, R., and Mazur, M. 2007. A Cretaceous scleractinian coral with a calcitic skeleton. Science, 9294.Google Scholar
Sullivan, J. and Swofford, D. L. 1997. Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. Journal of Mammalian Evolution, 4(2):7786.CrossRefGoogle Scholar
Todd, P. A. 2008. Morphological plasticity in scleractinian corals. Biological Reviews, 83(3):315337.CrossRefGoogle ScholarPubMed
Veron, J. 2008. Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs, 27(3):459472.CrossRefGoogle Scholar
Veron, J. E. N. 1995. Corals in space and time. UNSW, Sydney, 321 p.Google Scholar
Wahlberg, N., Braby, M. F., Brower, A. V. Z., de Jong, R., Lee, M.-M., Nylin, S., Pierce, N. E., Sperling, F. A. H., Vila, R., Warren, A. D., and Zakharov, E. 2005. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proceedings of the Royal Society B: Biological Sciences, 272(1572):15771586.CrossRefGoogle ScholarPubMed
Waller, R. G., Adkins, J. F., Robinson, L. F., and Shank, T. M. 2007. Ancient DNA techniques: applications for deep-water corals. Bulletin of Marine Science, 81:351359.Google Scholar
Wells, J. W. 1956. Scleractinia, p. F328–F443. In Moore, R. C. (ed.), Treatise on invertebrate paleontology: Coelenterata. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Wiens, J. J. 2003. Missing data, incomplete taxa and phylogenetic accuracy. Systematic Biology, 52(4):528538.CrossRefGoogle ScholarPubMed
Wiens, J. J. 2006a. Missing data and the accuracy of Bayesian phylogenetics. Journal of Systematics and Evolution, 46(3):307314.Google Scholar
Wiens, J. J. 2006b. Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics, 39(1):3442.CrossRefGoogle ScholarPubMed
Wiens, J. J. 2009. Paleontology, genomics, and combined-data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa? Systematic Biology, 58(1):8799.CrossRefGoogle ScholarPubMed
Wiens, J. J., Fetzner, J. W., Parkinson, C. L., and Reeder, T. W. 2005. Hylid frog phylogeny and sampling strategies for speciose clades. Systematic Biology, 54(5):778807.CrossRefGoogle Scholar
Wiens, J. J., Kuczynski, C. A., Townsend, T., Reeder, T. W., Mulcahy, D. G., and Sites, J. W. 2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology, 59(6):674688.CrossRefGoogle Scholar
Wood, R. 1999. Reef evolution. University Press, Oxford.Google Scholar
Zilberberg, C., and Edmunds, P. J. 1999. Patterns of skeletal structure variability in colonies of the reef coral Montastraes franksi . Bulletin of Marine Science, 64(2):373381.Google Scholar
Zwickl, D. J., and Hillis, D. M. 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology, 51(4):588598.CrossRefGoogle ScholarPubMed
Zuckerkandl, E., and Pauling, L. 1965. Evolutionary divergence and convergence in proteins, p. 97166 In Bryson, V. and Vogel, H. J. (eds.), Evolving Genes and Proteins. Academic Press, New York.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 17 *
View data table for this chart

* Views captured on Cambridge Core between 21st July 2017 - 18th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-qzt2x Total loading time: 0.471 Render date: 2021-01-18T21:00:18.452Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Jan 18 2021 20:56:25 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Molecules, Morphology, Fossils and the Origination and Extinction Dynamics of Scleractinian Corals
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Molecules, Morphology, Fossils and the Origination and Extinction Dynamics of Scleractinian Corals
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Molecules, Morphology, Fossils and the Origination and Extinction Dynamics of Scleractinian Corals
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *