Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T09:45:44.633Z Has data issue: false hasContentIssue false

Tunable elastic fluidic resonant MEMS-type actuator

Published online by Cambridge University Press:  11 June 2013

Hamzeh K. Bardaweel*
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, The University of Jordan, Amman 11942, Jordan
Get access

Abstract

In this article, a MEMS-based elastic fluidic actuator is presented. The actuator is driven at its natural frequency. The actuator consists of a thin film of two-phase fluid squeezed between two thin membranes with the top membrane attached to an actuation arm. The top membrane represents the elastic component which deforms under applied pressure. The results show that generated force and displacement amplitude of actuation arm are enhanced for resonant operation. Natural frequency of the actuator is tuned through selection of different actuator components. For current actuator design, maximum generated force and displacement amplitude obtained are approximately 39 mN/W and 16 μm/W, respectively. Natural frequency of the actuator ranges between 110 Hz and over 1000 Hz. This resonant-type actuator is suitable for applications where large generated forces and displacements are needed, such as pumping fluid through micro channels, and providing translational and rotational motion needed in microfluidics systems.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Volder, M.D., Reynaerts, D., J. Micromech. Microeng. 20, 043001 (2010)CrossRef
Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A., Quake, S.R., Science 288, 113 (2000)CrossRef
Shimizu, K., Kawakami, S., Hayashi, K., Mori, Y., Hashida, M., Konishi, S., J. Control. Release 159, 85 (2012)CrossRef
De Volder, M., Reynaerts, D., Sens. Actuators A Phys. 152, 234 (2009)CrossRef
Yoshida, K., Kamiyama, K., Kim, J.-W., Yokota, S., Sens. Actuators A Phys. 175, 101 (2012)CrossRef
Kim, J.-W., Yoshida, K., Kouda, K., Yokota, S., Sens. Actuators A Phys. 156, 366 (2009)CrossRef
Moraes, C., Sun, Y., Simmons, C.A., J. Micromech. Microeng. 19, 065015 (2009)CrossRef
Kan, T., Matsumoto, K., Shimoyama, I., J. Micromech. Microeng. 20, 085032 (2010)CrossRef
Pi, X.T., Liu, H.Y., Wei, K., Lin, Y.L., Zheng, X.L., Wen, Z.Y., Int. J. Pharm. 382, 160 (2009)
Bergstrom, P.L., Ji, J., Liu, Y.N., Kaviany, M., Wise, K.D., J. Microelectromech. Syst. 4, 10 (1995)CrossRef
Lee, J.S., Lucyszyn, S., Sens. Actuators A Phys. 133, 294 (2007)CrossRef
Vandepol, F.C.M., Wonnink, D.G.J., Elwenspoek, M., Fluitman, J.H.J., Sens. Actuators 17, 139 (1989)CrossRef
Vandepol, F.C.M., Vanlintel, H.T.G., Elwenspoek, M., Fluitman, J.H.J., Sens. Actuators A Phys. 21, 198 (1990)CrossRef
Whalen, S.A., Richards, C.D., Bahr, D.F., Richards, R.F., Sens. Actuators A Phys. 134, 201 (2007)CrossRef
Tanner, D.M., Miller, W.M., Peterson, K.A., Dugger, M.T., Eaton, W.P., Irwin, L.W., Senft, D.C., Smith, N.F., Tangyunyong, P., Miller, S.L., Microel. Reliab. 39, 401 (1999)CrossRef
Bardaweel, H., Preetham, B., Richards, R., Richards, C., Anderson, M., Microsys. Technol. 17, 1251 (2011)CrossRef
Morganti, E., Fuduli, I., Montefusco, A., Petasecca, M., Pignatel, G.U., J. Environ. Anal. Chem. 85, 687 (2005)CrossRef
Conway, N.J., Traina, Z.J., Kim, S.G., J. Micromech. Microeng. 17, 781 (2007)CrossRef
Sinclair, M.J., in Itherm 2000: Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 2000, vol. I, pp. 127132