Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T00:02:25.641Z Has data issue: false hasContentIssue false

Transport mechanisms and photovoltaic properties of zinc tetraphenylporphyrin/n-type silicon heterojunction solar cell

Published online by Cambridge University Press:  28 September 2011

H.M. Zeyada*
Affiliation:
Department of Physics, Faculty of Science, Mansoura University, Damietta Branch, P.O. 34517, Damietta El-Gedida, Egypt
M.M. El-Nahass
Affiliation:
Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
M.A. Ali
Affiliation:
Department of Physics, Faculty of Science, Mansoura University, Damietta Branch, P.O. 34517, Damietta El-Gedida, Egypt
*
Get access

Abstract

The DC electrical measurements on Au/ZnTPP/Au planar structure showed two regimes of electrical conductivity depending on temperature, at low temperatures the activation energy is 0.24 eV and variable range hopping in localized states near Fermi level is the operating conduction mechanism, at high temperatures the activation energy is 0.998 eV and phonon-assisted hopping of small polarons is the operating conduction mechanism. The capacitance-voltage measurements on Au/ZnTPP/n-Si/Al showed that the formed junction is linearly graded one. The thickness of depletion region in ZnTPP and n-Si has been determined and the built-in potential is 0.85 V. The concentration gradient of holes and electrons is 2.6 × 1020 holes/m4 and 0.3 × 1020 electrons/m4, respectively. Thermoelectric power measurements showed that ZnTPP films are p-type semiconductor and polaron activation energy is 0.37 eV. A hybrid solar cell of Au/ZnTPP/n-Si/Al had been constructed by growing ZnTPP film via thermal evaporation technique on n-Si wafer. Dark current-voltage measurements of the device at different temperatures showed that there are three conduction mechanisms operating in the device. The dominance of any of them depends on applied potential. The photovoltaic properties of Au/ZnTPP/n-Si/Al hybrid solar had been evaluated.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nazeeruddin, M.K., Baker, R.H., Officer, D.L., Campbell, W.M., Burrel, A., Graetzel, M., Langmuir 20, 6514 (2004)CrossRef
El-Nahass, M.M., Zeyada, H.M., Aziz, M.S., Maklouf, M.M., Thin Solid Films 492, 290 (2005)CrossRef
Han, W., Durantini, E.W., Moore, T.A., Moore, A.L., Gust, D., Rez, P., Leatherman, G., Seely, G., Tao, N., Lindsay, S.H., J. Phys. Chem. B 101, 10719 (1997)CrossRef
Di Natale, C., Paolesse, R., Burgio, M., Martinelli, E., Pennazza, G., Amico, A., Anal. Chem. Acta 513, 49 (2004)CrossRef
Khodykin, O.V., Zilker, S.J., Haarer, D., Kharlamov, B.M., Opt. Lett. 24, 513 (1999)CrossRef
Nogueira, A.F., Engelmann, A.L., Araki, K., Toma, H.E., Photochem. Photobiol. 3, 56 (2004)CrossRef
Gamboa, M., Campos, M., Torres, L.A., J. Chem. Thermodyn. 42, 666 (2010)CrossRef
Gouterman, M., J. Chem. Phys. 30, 1139 (1959)CrossRef
Harima, Y., Yamshita, K., Suzuki, H., Appl. Phys. Lett. 45, 1144 (1984)CrossRef
Yamashita, K., Harima, Y., Matsubayashi, T., J. Phys. Chem. 93, 5311 (1989)CrossRef
Nelson, J., Curr. Opin. Solid State Mater. Sci. 6, 87 (2002)CrossRef
Takahashi, K., Nakatani, S., Yamaguchi, T., Komura, T., Ito, S., Murata, K., Sol. Energy Mater. Sol. Cells 45, 127 (1997)CrossRef
Takahashi, K., Nakamura, J., Yamaguchi, T., Komura, T., Ito, S., Murata, K., J. Phys. Chem. B 101, 991 (1997)CrossRef
Takashi, K., Higashi, M., Tsuda, Y., Yamaguchi, T., Komura, T., Ito, S., Murata, K., Thin Solid Films 333, 256 (1998)CrossRef
Pradhan, B., Pal, A.J., Sol. Energy Mater. Sol. Cells 81, 469 (2004)CrossRef
Cakar, M., Onganer, Y., Turut, A., Synt. Met. 126, 213 (2002)CrossRef
Aydin, M.E., Kihcoglu, T., Akkilic, K., Hosgoren, H., Physica B 381, 113 (2006)CrossRef
Akkilic, K., Aydin, M.E., Uzun, I., Kihcoglu, T., Synt. Met. 156, 958 (2006)CrossRef
Aydin, M.E., Yakuphanoglu, F., Eomc, J.H., Hwang, D.H., Physica B 387, 239 (2006)CrossRef
Horowitz, G., Garnier, F., Sol. Energy Mater. 13, 47 (1986)CrossRef
Antohe, S., Tomozeiu, N., Gogonea, S., Phys. Stat. Sol. (a) 125, 397 (1991)CrossRef
Remaki, B., Guillard, G., Mayes, D., Opt. Mater. 9, 240 (1998)CrossRef
El-Nahass, M.M., Zeyada, H.M., Aziz, M.S., El-Ghamaz, N.A., Solid State Electron. 49, 1314 (2005)CrossRef
Riad, S., Thin Solid Films 370, 253 (2000)CrossRef
El-Nahass, M.M., Zeyada, H.M., Hendi, A.A., Eur. Phys. J. Appl. Phys. 25, 85 (2004)CrossRef
El-Nahass, M.M., Abd-El-Rahman, K.F., Farag, A.A.M., Darwish, A.A., Org. Electron. 6, 129 (2005)CrossRef
Kh.S. Karimov, , Ahmed, M.M., Moiz, A.A., Fedorov, M.I., Sol. Energy Mater. Sol. Cells 87, 61 (2005)CrossRef
Ackermann, J., Videlot, C., ELkassmi, A., Thin Solid Films 403, 157 (2002)CrossRef
Gorbach, T.Ya., Smertemko, P.S., Svechnikove, S.V., kuzma, M., Thin Solid Films 511, 494 2006.
Zeyada, H.M., El-Nahass, M.M., El-Menyawy, E.M., Sol. Energy Mater. Sol. Cells 92, 1586 (2008)CrossRef
Sze, S.M., Physics of Semiconductor Devices (John Wiley & Sons Inc., New York, 1983)Google Scholar
Mott, N.F., Conduction in Non-crystalline Materials (Clarendon Press, Oxford, 1987)Google Scholar
Lampert, M.A., Mark, P., Current Injection into Solids, (Academic Press, New York, 1970)Google Scholar
Kobayashi, H., Ishida, T., Nakato, Y., Tsubomura, H., J. Appl. Phys. 69, 725 (1990)
Riben, R., Feucht, D.L., Int. J. Electron. 20, 583 (1966)CrossRef
Kao, K.C., Hwang, W., Electrical Transport in Solids-with Particular Reference to Organic Semiconductors (Pergamon Press, Oxford, 1981)Google Scholar