Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T18:34:35.007Z Has data issue: false hasContentIssue false

A tomographic visualization of electric discharge sound fields in atmospheric pressure plasma using laser diffraction *

Published online by Cambridge University Press:  18 February 2013

Toshiyuki Nakamiya*
Affiliation:
Graduate School of Industrial Engineering, Tokai University, 9-1-1 Toroku Higashi-ku, Kumamoto 862-865, Japan
Fumiaki Mitsugi
Affiliation:
Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Chuo-ku, Kumamoto 860-0082, Japan
Yoichiro Iwasaki
Affiliation:
Graduate School of Industrial Engineering, Tokai University, 9-1-1 Toroku Higashi-ku, Kumamoto 862-865, Japan
Tomoaki Ikegami
Affiliation:
Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Chuo-ku, Kumamoto 860-0082, Japan
Ryoichi Tsuda
Affiliation:
Graduate School of Industrial Engineering, Tokai University, 9-1-1 Toroku Higashi-ku, Kumamoto 862-865, Japan
Yoshito Sonoda
Affiliation:
Graduate School of Industrial Engineering, Tokai University, 9-1-1 Toroku Higashi-ku, Kumamoto 862-865, Japan
Henryka Danuta Stryczewska
Affiliation:
Institute of Electrical Engineering and Electrotechnology, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 38A Nadbystrzycka str., 20-618 Lublin, Poland
Get access

Abstract

The phase modulation of transparent gas can be detected using Fraunhofer diffraction technique, which we call optical wave microphone (OWM). The OWM is suitable for the detection of sonic wave from audible sound to ultrasonic wave. Because this technique has no influence on sound field or electric field during the measurement, we have applied it to the sound detection for the electric discharges. There is almost no research paper that uses the discharge sound to examine the electrical discharge phenomenon. Two-dimensional visualization of the sound field using the OWM is also possible when the computerized tomography (CT) is combined. In this work, coplanar dielectric barrier discharge sin different gases of Ar, N2, He were characterized via the OWM as well as applied voltage and discharge current. This is the first report to investigate the influence of the type of the atmospheric gas on the two-dimensional sound field distribution for the coplanar dielectric barrier discharge using the OWM with CT.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution to the Topical Issue “13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)”, Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

References

Diatczyk, J., Stryczewska, H.D., Komarzyniec, G., J. Adv. Oxid. Technol. 9, 174 (2006)
Komarzyniec, G., Diatczyk, J., Stryczewska, H.D., J. Adv.Oxid. Technol. 9, 178 (2006)
Kogelschatz, U., Plasma Chem. Plasma Process. 23, 1 (2003)CrossRef
Morent, R., Gevter, N.D., Verschuren, J., Clerck, D.K., Kiekens, P., Leys, C., Surf. Coat. Technol. 202, 3427 (2008)CrossRef
Laurentie, J.C., Jolibois, J., Moreau, E., J. Electrostat. 67, 93 (2009)CrossRef
Eliasson, B., Hirth, M., Kogelschatz, U., J. Phys. D:Appl.Phys. 20, 1421 (1987)CrossRef
Hoder, T., Šíra, M., Kozlov, K.V., Wagner, H.-E., J. Phys.D: Appl. Phys. 41, 035212 (2008)CrossRef
Nakamiya, T., Ebihara, K., Ikegami, T., Sonoda, Y., Tsuda, R., J. Phys.: Conf. 100, 062016 (2008)
Nakamiya, T., Tanaka, T., Ebihara, K., Ikegami, T., Tsuda, R., IEE Jpn PST-04-80, 45 (2004)
Nakamiya, T., Mitsugi, F., Suyama, S., Ikegami, T., Sonoda, Y., Iwasaki, Y., Tsuda, R., J. Adv. Oxid. Technol. 13, 43 (2010)
Nakamiya, T., Iwasaki, Y., Mitsugi, F., Kozai, R., Ikegami, T., Sonoda, Y., Tsuda, R., J. Adv. Oxid. Technol. 14, 43 (2011)
Sonoda, Y., Sakurai, A., Muraoka, K., Akazaki, M., Jpn J.Appl. Phys. 21, L372 (1982)CrossRef
Sonoda, Y., Suetsugu, Y., Muraoka, K., Akazaki, M., Plasma Phys. Control. Fusion 25, 1113 (1983)
Sonoda, Y., Ochi, S., Matsuo, K., Muraoka, K., Akazaki, M., Evans, D.E., Jpn J. Appl. Phys. 23, 1412 (1984)CrossRef
Sonoda, Y., Akazaki, M., Jpn J. Appl. Phys. 33, 3110 (1994)CrossRef
Kim, K.C., Fukuhara, H., Yamazaki, H., Jpn J. Appl. Phys. 41, 374 (2002)CrossRef
Sakoda, T., Sonoda, Y., Acoust. Sci. Tech. 29, 295 (2008)CrossRef
Goodman, J.W., Introduction to Fourier Optics, 3rd edn. (Roberts and Company Publishers, 2005)Google Scholar
Gonzalez, R.C., Woods, R.E., Digital Image Processing (Pearson Education, NJ, 2008)Google Scholar