Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-22T15:44:58.335Z Has data issue: false hasContentIssue false

Thermoelectric transport in heterogeneous medium: the role of thermal boundary resistance

Published online by Cambridge University Press:  06 June 2012

F. Hao
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
D.N. Fang*
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China LTCS, College of Engineering, Peking University, Beijing 100087, P.R. China
J.Y. Li
Affiliation:
Department of Mechanical Engineering, University of Washington, Seattle, WA 98195-2600, USA
Get access

Abstract

To investigate the effect of thermal boundary resistance (TBR) on thermoelectric transport, the discontinuity in temperature is considered at the interface through Kapitza’s definition. The effect depends on two factors: the length of thermoelectric element and the value of TBR. More importantly, it is found that TBR has dramatic impact on the reduction in thermoelectric conversion efficiency, which decays exponentially with increasing TBR. The ratio of thermal boundary resistance to the length of thermoelectric element leading to the decrease of effective Seebeck coefficient largely accounts for the degradation of thermoelectric performance at the micro-scale.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Disalvo, F.J., Science 258, 5428 (1999)
Snyder, G.J., Toberer, E.S., Nature 7, 105 (2008)CrossRef
Hochbaum, A. et al., Nature 451, 163 (2008)CrossRef
Coleman, J.N. et al., Science 331, 568 (2011)CrossRef
He, Y., Donadio, D., Giulia, G., Nano Lett. 11, 3608 (2011)CrossRef
Chatterjee, S., Mater. Lett. 62, 707 (2008)CrossRef
Liang, G. et al., J. Appl. Phys. 107, 0143 (2010)
Parker, D., Singh, D.J., Phys. Rev. B 82, 035204 (2010)CrossRef
Tritt, T.M., Subramanian, M.A., MRS Bulletin 31, 188 (2006)CrossRef
Park, K., Jang, K.U., Mater. Lett. 60, 1106 (2006)CrossRef
Gelbstein, Y., J. Appl. Phys. 105, 023713 (2009)CrossRef
Sun, T., Zhao, X.B., Zhu, T.J., Tu, J.P., Mater. Lett. 60, 2534 (2006)CrossRef
Zhao, X.B., Ji, X.H., Zhang, Y.H., Cao, G.S., Appl. Phys. A 80, 1567 (2005)CrossRef
Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R., Lee, H., Wang, D., Ren, Z., Fleurial, J.P., Gogna, P., Adv. Mat. 19, 1043 (2007)CrossRef
Webman, I., Jortner, J., Cohen, M.H., Phys. Rev B 16, 2959 (1977)CrossRef
Bergman, D.J., Levy, O., J. Appl. Phys. 70, 6821 (1991)CrossRef
Bergman, D.J., Fel, L.G., J. Appl. Phys. 85, 8205 (1999)CrossRef
Kleber, X., Simonet, L., Fouquet, F., Model. Simul. Mater. Sci. Eng. 14, 21 (2006)CrossRef
Rodríguez, A., Vián, J.G., Astrain, D., Martínez, A., Energy Convers. Manage. 50, 1236 (2009)CrossRef
Gather, F., Heiliger, C., Klar, P.J., J. Phys. Condens. Matter 23, 335301 (2011)CrossRef
Lossec, M., Multon, B., Ben Ahmed, H., Coupil, C., Eur. Phys. J. Appl. Phys. 52, 11103 (2010)CrossRef
Logvinov, G.N., Velazquez, J.E., Lashkevych, I.M., Gurevich, Y.G., Appl. Phys. Lett. 89, 092118 (2006)CrossRef
Fischer, K., Stoiber, C., Kyarad, A., Lengfellner, H., Appl. Phys. A 78, 323 (2004)CrossRef
Yan, F., Zhu, T.J., Zhao, X.B., Dong, S.R., Appl. Phys. A 88, 425 (2007)CrossRef
Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47, 12727 (1993)CrossRef
Harman, T.C., Taylor, P.J., Walsh, M.P., LaForge, B.E., Science 297, 5590 (2002)CrossRef
Bottner, H., Chen, G., Venkatasubramanian, R., MRS Bulletin 31, 211 (2006)CrossRef
Medlin, D.L., Snyder, G.J., Curr. Opin. Colloid Interface Sci. 14, 226 (2009)CrossRef
Rowe, D.M. (ed.), Thermoelectric Handbook: Macro to Nano (CRC Press, Boca Raton, USA, 2006)
Kapitza, P.L., J. Phys. 4, 181 (1941)
Hu, M., Keblinski, P., Wang, J.S., Raravikar, N., J. Appl. Phys. 104, 083503 (2008)CrossRef
Wang, Z. et al., Nano Lett. 11, 113 (2011)CrossRef
Persson, B.N.J., Volokitin, A.I., Ueba, H., J. Phys. Condens. Matter 23, 045009 (2011)CrossRef
Hao, F., Fang, D., Xu, Z., Appl. Phys. Lett. 100, 091903 (2012)CrossRef
Reifenberg, J.P. et al., IEEE Electron Device Lett. 31, 56 (2010)CrossRef
Freunek, M., Müller, M., Ungan, T., Walker, W., Reindl, L.M., J. Electron. Mater. 38, 1214 (2009)CrossRef
Majumdar, A., Reddy, P., Appl. Phys. Lett. 84, 4768 (2004)CrossRef
Ju, Y.S., Ghoshal, U., J. Appl. Phys. 88, 4135 (2000)
Xuan, X.C., Energy Convers. Manage. 44, 3197 (2003)CrossRef
Yamashita, O., Appl. Energy 88, 3022 (2011)CrossRef
Yu, A.Y.C., Solid-State Electron. 13, 239 (1970)CrossRef
Mohney, S.E., Wang, Y., Cabassi, M.A., Lew, K.K., Dey, S., Redwing, J.M., Mayer, T.S., Solid-State Electron. 49, 227 (2005)CrossRef
Robinson, J.A., LaBella, M., Zhu, M., Hollander, M., Kasarda, R., Hughes, Z., Trumbull, K., Cavalero, R., Snyder, D., Appl. Phys. Lett. 98, 053103 (2011)CrossRef
Goupil, C., Seifert, W., Zabrocki, K., Muller, E., Snyder, G.J., Entropy 13, 1481 (2011)CrossRef
Drabkin, I.A., Ershova, L.B., in Proc of the 25th Int. Conf. on Thermoelectrics, ICT2006, IEEE, Vienna, Austria, 2006, p. 467
Swartz, E.T., Pohl, R.O., Rev. Mod. Phys. 61, 605 (1989)CrossRef
Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R., J. Appl. Phys. 93, 793 (2003)CrossRef
Lee, S.M., Cahill, D.G., Venkatasubramanian, R., Appl. Phys. Lett. 70, 2957 (1997)CrossRef
Landry, E.S., McGaughey, A.J.H., Phys. Rev. B 80, 165304 (2009)CrossRef