Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T04:16:17.327Z Has data issue: false hasContentIssue false

Synthesis and characterization of pulsed laser deposited SnO2-Fe2O3 composite thin films for TCO application

Published online by Cambridge University Press:  11 July 2014

Mitali Chowdhury
Affiliation:
Department of Applied Physics, Indian School of Mines, Dhanbad 826004, India
Arup Kumar Kunti
Affiliation:
Department of Applied Physics, Indian School of Mines, Dhanbad 826004, India
Shailendra Kumar Sharma*
Affiliation:
Department of Applied Physics, Indian School of Mines, Dhanbad 826004, India
Mukul Gupta
Affiliation:
UGC-DAE Consortium for Scientific Research, Indore 452017, India
Ram Janay Chaudhary
Affiliation:
UGC-DAE Consortium for Scientific Research, Indore 452017, India
Get access

Abstract

SnO2-Fe2O3 composite thin films were deposited on quartz substrate at 650 °C by pulsed laser deposition with Fe2O3 content varying between 0 and 50 wt.%. The effect of increasing Fe2O3 content on structural, optical and electrical properties of SnO2-Fe2O3 films were investigated. X-ray diffraction analysis indicates that the nature of deposited composite films can be tune from crystalline to amorphous with increase in the Fe2O3 content. X-ray photoelectron spectroscopy studies confirm the presence of SnO2 and Fe2O3 in the microstructure. Atomic force microscopy studies of the deposited films indicate that RMS roughness vary between 114.4 and 1.48 nm. The average optical transmittance decreases from 92 to 72% with increasing Fe2O3 content of the deposited films. The optical bandgap was decreased from 3.69 to 3.31 eV with increase in Fe2O3 content. The minimum resistivity was observed 3.71 × 10−2 Ω cm for the 30 wt.% Fe2O3 composite film. The low resistivity and high transmittance in the visible region enables these films suitable for optoelectronic applications.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kumar, V., Singh, F., Ntwaeaborwa, O.M., Swart, H.C., Appl. Surf. Sci. 279, 472 (2013)CrossRef
Kumar, V., Singh, R.G., Singh, N., Kapoor, A., Mehra, R.M., Purohit, L.P., Mater. Res. Bull. 48, 362 (2013)CrossRef
Jio, Z., Wang, S., Bian, L., Liu, J., Mater. Res. Bull. 35, 741 (2000)CrossRef
Kumar, V., Singh, N., Kumar, V., Kapoor, A., Purohit, L.P., Ntwaeaborwa, O.M., Swart, H.C., J. Appl. Phys. 114, 134506 (2013)CrossRef
Tamaki, J., Nagaishi, M., Teraoka, Y., Mimura, N., Yamazoe, N., Appl. Surf. Sci. 221, 183 (1989)CrossRef
Weimar, U., Schierbaum, K.D., Gopel, W., Sens. Actuators B 1, 93 (1990)CrossRef
Vishwakarma, S.R., Rahmatullar, , Prasad, H.C., Solid-State Electron. 36, 1345 (1993)CrossRef
Kima, G.W., Sunga, C.H., Seoa, Y.J., Parka, K.Y., Heoa, S.N., Leeb, S.H., Kooa, B.H., J. Ceram. Process. Res. 13, 394 (2012)
Li, Z., Wang, H., Liu, P., Zhao, B., Zhang, Y., Appl. Surf. Sci. 255, 4470 (2009)CrossRef
Fang, L.M., Zu, X.T., Li, Z.J., Zhuc, S., Liu, C.M., Zhoue, W.L., Wang, L.M., J. Alloys Compd. 454, 261 (2008)CrossRef
Kima, K.-W., Choa, P.-S., Kima, S.-J., Lee, J.-H., Kang, C.-Y., Kim, J.-S., Yoon, S.-J., Sens. Actuators B 123, 318 (2007)CrossRef
Jingchang, Z., Liye, F., Jia, W., Xuehua, G., Weiliang, C., Chin. Sci. Bull. 51, 2050 (2006)
Verma, M.K., Gupta, V., J. Exp. Nanosci. 8, 326 (2013)CrossRef
Racheva, T.M., Stambolova, I.D., Donchev, T., J. Mater. Sci. 29, 281 (1994)CrossRef
Maosong, T., Guorui, D., Dingsan, G., Appl. Surf. Sci. 171, 226 (2001)CrossRef
Soitah, T.N., Yang, C., Sun, L., Mater. Sci. Semicond. Process. 13, 125 (2010)CrossRef
Miller, E.L., Paluselli, D., Marsen, B., Rocheleau, R.E., Thin Solid Films 466, 307 (2004)CrossRef
Dghoughi, L., Elidrissi, B., Bernede, C., Addou, M., Alaoui Lamrani, M., Regragui, M., Erguig, H., Appl. Surf. Sci. 253, 1823 (2006)CrossRef
Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M., Appl. Phys. Lett. 84, 1332 (2004)CrossRef
Sun, P., Cai, Y., Du, S., Xu, X., You, L., Ma, J., Liu, F., Liang, X., Sun, Y., Lu, G., Sens. Actuators B 182, 336 (2013)CrossRef
Kotsikau, D., Ivanovskaya, M., Orlik, D., Falasconi, M., Sens. Actuators B 101, 199 (2004)CrossRef
Zhao, C., Hu, W., Zhang, Z., Zhou, J., Pan, X., Xie, E., Sens. Actuators B 195, 486 (2014)CrossRef
Wang, B.B., Fu, X.X., Liu, F., Shi, S.L., Cheng, J.P., Zhang, X.B., J. Alloys Compd. 587, 82 (2014)CrossRef
Rania, S., Roy, S.C., Karar, N., Bhatnagar, M.C., Solid State Commun. 141, 214 (2007)CrossRef
Chrisey, D.B., Hubler, G.K., Pulsed Laser Deposition of Thin Film (John Wiley & Sons, Inc., New York, 1994)Google Scholar
Rani, S., Roy, S.C., Bhatnagar, M.C., Sens. Actuators B 122, 204 (2007)CrossRef
Sinha, S.K., Rakshit, T., Ray, S.K., Manna, I., Appl. Surf. Sci. 257, 10551 (2011)CrossRef
Cullity, B.D., Elements of X-ray Diffraction (Addison-Wesley, Palo Alto, CA, 1956)Google Scholar
Mahmoudi Chenari, H., Weinhardt, L., Rodriguez Lastrab, N.S., Ernst, M.A., Reinert, F., Golzan, M.M., Hassanzadeh, A., Mater. Lett. 85, 168 (2012)CrossRef
Yan, W., Fan, H., Zhai, Y., Yang, C., Ren, P., Huang, L., Sens. Actuators B 160, 1372 (2011)CrossRef
Paraguay, F., Morales, D.J., Estrada, W., Andrade, L.E., Miki-Yoshida, M., Thin Solid Films 366, 16 (2000)CrossRef
Chen, Z.C., Zhunge, L.J., Wu, X.M., Meng, Y.D., Thin Solid Films 515, 5462 (2007)CrossRef
Wang, X.C., Mi, W.B., Kuang, D.F., Appl. Surf. Sci. 256, 1930 (2010)CrossRef
Haacke, G., J. Appl. Phys. 47, 4086 (1976)CrossRef