Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T13:01:05.011Z Has data issue: false hasContentIssue false

Surface modification of PET polymers by using atmospheric-pressure air brush-shape plasma for biomedical applications

Published online by Cambridge University Press:  25 January 2013

Weiyuan Ni
Affiliation:
School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, P.R. China School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, P.R. China
Dongping Liu*
Affiliation:
School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, P.R. China School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, P.R. China
Ying Song
Affiliation:
School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, P.R. China
Longfei Ji
Affiliation:
School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, P.R. China School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, P.R. China
Qi Zhang
Affiliation:
School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, P.R. China School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, P.R. China
Jinhai Niu
Affiliation:
School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, P.R. China
Get access

Abstract

In this study, we report a method to generate a reliable and homogeneous brush-shape air plasma plume at atmospheric pressure for surface modification of PET polymers and biomedical applications. The room-temperature air plasma plume consists of well-aligned and stable microplasma jets formed in the vicinity of the ends of hollow optical fibers at atmospheric pressure. This plasma plume may lead to the uniform and large-area surface modification of PET polymers. The plasma plume may efficiently prevent the heat-sensitive polymers from being damaged and significantly affect the surface properties of treated polymers, such as surface chemical compositions, hydrophobicity and biocompatibility. Compared to a high density of blood platelets adhering onto the untreated PET sample, no adhesion of blood platelets is observed on the plasma-activated PET sample due to the surface functionalization. The reaction processes of plasma-activated species at the surface of treated polymers are discussed based on the obtained experimental results.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, S.-Z., Huang, W.-T., Zhang, J., Wang, D., Appl. Phys. Lett. 94, 111501 (2009)CrossRef
Huang, C., Hsu, W.-T., Liu, C.-H., Wu, S.-Y., Yang, S.-H., Chen, T.-H., Wei, T.-C., IEEE Trans. Plasma Sci. 37, 1127 (2009)CrossRef
Pothiraja, R., Bibinov, N., Awakowicz, P., J. Phys. D: Appl. Phys. 43, 495201 (2010)CrossRef
Aita, T., Ogawa, K., Saito, Y., Sumiyoshi, Y., Higuchi, T., Sato, S., Surf. Coat. Technol. 205, 861 (2010)CrossRef
Xiong, Z., Lu, X. P., Feng, A., Pan, Y., Ostrikov, K., Phys. Plasmas 17, 123502 (2010)
Kim, S.J., Chung, T.H., Bae, S.H., Leem, S.H., Appl. Phys. Lett. 97, 023702 (2010)CrossRef
Zhou, X., Xiong, Z., Cao, Y., Lu, X., Lu, D., IEEE Trans. Plasma Sci. 38, 3370 (2010)CrossRef
Kim, J.Y., Wei, Y., Li, J., Foy, P., Hawkins, T., Ballato, J., Kim, S.-O, Small 7, 2291 (2011)CrossRef
Kong, M.G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., van Dijk, J., Zimmermann, J.L., New J. Phys. 11, 115012 (2009)CrossRef
Zhang, X., Li, M., Zhou, R., Feng, K., Yang, S., Appl. Phys. Lett. 93, 021502 (2008)CrossRef
Goree, J., Liu, B., Drake, D., J. Phys. D: Appl. Phys. 39, 3479 (2006)CrossRef
Lu, X., Jiang, Z., Xiong, Q., Tang, Z., Pan, Y., Appl. Phys. Lett. 92, 151504 (2008)CrossRef
Lu, X., Cao, Y., Yang, P., Xiong, Q., Xiong, Z., Xian, Y., Pan, Y., IEEE Trans. Plasma Sci. 37, 668 (2009)
Bussiahn, R., Brandenburg, R., Gerling, T., Kindel, E., Lange, H., Lembke, N., Weltmann, K.-D., Von Woedtke, Th., Kocher, T., Appl. Phys. Lett. 96, 143701 (2010)CrossRef
Li, X., Yuan, N., Jia, P., Chen, J., Phys. Plasmas 17, 093504 (2010)CrossRef
Hsu, C.-C., Yang, Y.-J., IEEE Trans. Plasma Sci. 38, 496 (2010)
Wu, S., Lu, X., Xiong, Z., Pan, Y., IEEE Trans. Plasma Sci. 38, 3404 (2010)CrossRef
Lu, X., Xiong, Z., Zhao, F., Xian, Y., Xiong, Q., Gong, W., Zou, C., Jiang, Z., Pan, Y., Appl. Phys. Lett. 95, 181501 (2009)CrossRef
Kolb, J.F., Mohamed, A.-A. H., Price, R.O., Swanson, R.J., Bowman, A., Chiavarini, R.L., Stacey, M., Schonenbach, K.H., Appl. Phys. Lett. 92, 241501 (2008)CrossRef
Deng, X.T., Shi, J.J., Kong, M.G., J. Appl. Phys. 101, 074701 (2007)CrossRef
Morfill, G.E., Kong, M.G., Zimmermann, J.L., New. J. Phys. 11, 115011 (2009)CrossRef
Eto, H., Ono, Y., Ogino, A., Nagatsu, M., Appl. Phys. Lett. 93, 221502 (2008)CrossRef
Song, Y., Liu, D., Ji, L., Wang, W., Niu, J., Zhang, X., IEEE Trans. Plasma Sci. 40, 1098 (2012)CrossRef
Sands, B.L., Ganguly, B.N., Tachibana, K., Appl. Phys. Lett. 92, 151503 (2008)CrossRef
Zhu, Y., Takada, T., Inoue, Y., Tu, D., IEEE Trans. Dielectr. Electr. Insul. 3, 460 (1996)
Li, X., Yuan, N., Jia, P., Chen, J., Phys. Plasma 17, 093504 (2010)CrossRef
Sakamoto, T., Matsuura, H., Akatsuka, H., J. Appl. Phys. 101, 023307 (2007)CrossRef
Bibinov, N.K., Fateev, A.A., Wiesemann, K., J. Phys. D: Appl. Phys. 34, 1819 (2001)CrossRef
Linss, V., Kupfer, H., Peter, S., Richter, F., J. Phys. D: Appl. Phys. 37, 1935 (2004)CrossRef
Lu, X., Jiang, Z., Xiong, Q., Tang, Z., Hu, X., Pan, Y., Appl. Phys. Lett. 92, 81502 (2008)CrossRef
Little, U., Buchana, F., Harkin-Jones, E., Graham, B., Fox, B., Boyd, A., Meenan, B., Dickson, G., Acta Biomater. 5, 2025 (2009)CrossRef
Niu, J., Liu, D., Chen, J., Ding, H., Wu, Y., Eur. Phys. J. Appl. Phys. 57, 1080 (2012)CrossRef
Sarra-Bournet, C., Turgeon, S., Mantovani, D., Laroche, G., Plasma Processes Polym. 3, 506 (2006)CrossRef
Sarra-Bournet, C., Turgeon, S., Mantovani, D., Laroche, G., J. Phys. D: Appl. Phys. 39, 3461 (2006)CrossRef
Beamson, G., Briggs, D., High Resolution XPS of Organic Polymers (Wiley, Chichester, 1992)Google Scholar
Liu, D., Niu, J., Yu, N., J. Vac. Sci. Technol. A 29, 061506 (2011)CrossRef
Sakamoto, C., Ayotte, G., Turgeon, S., Massines, F., Laroche, G., Langmuir 25, 9432 (2009)CrossRef
Niu, J., Liu, D., Chen, J., Ding, H., Wu, Y., Eur. Phys. J. Appl. Phys. 57, 10801 (2012)CrossRef
Wang, D., Zhao, D., Feng, K., Zhang, X., Liu, D., Yang, S., Appl. Phys. Lett. 98, 161501 (2011)CrossRef
Laroussi, M., Leipold, F., Int. J. Mass Spectrom. 233, 81 (2004)CrossRef