Skip to main content Accessibility help
×
Home

Surface modification of PET polymers by using atmospheric-pressure air brush-shape plasma for biomedical applications

  • Weiyuan Ni (a1) (a2), Dongping Liu (a1) (a2), Ying Song (a1), Longfei Ji (a1) (a2), Qi Zhang (a1) (a2) and Jinhai Niu (a1)...

Abstract

In this study, we report a method to generate a reliable and homogeneous brush-shape air plasma plume at atmospheric pressure for surface modification of PET polymers and biomedical applications. The room-temperature air plasma plume consists of well-aligned and stable microplasma jets formed in the vicinity of the ends of hollow optical fibers at atmospheric pressure. This plasma plume may lead to the uniform and large-area surface modification of PET polymers. The plasma plume may efficiently prevent the heat-sensitive polymers from being damaged and significantly affect the surface properties of treated polymers, such as surface chemical compositions, hydrophobicity and biocompatibility. Compared to a high density of blood platelets adhering onto the untreated PET sample, no adhesion of blood platelets is observed on the plasma-activated PET sample due to the surface functionalization. The reaction processes of plasma-activated species at the surface of treated polymers are discussed based on the obtained experimental results.

Copyright

Corresponding author

References

Hide All
[1]Li, S.-Z., Huang, W.-T., Zhang, J., Wang, D., Appl. Phys. Lett. 94, 111501 (2009)
[2]Huang, C., Hsu, W.-T., Liu, C.-H., Wu, S.-Y., Yang, S.-H., Chen, T.-H., Wei, T.-C., IEEE Trans. Plasma Sci. 37, 1127 (2009)
[3]Pothiraja, R., Bibinov, N., Awakowicz, P., J. Phys. D: Appl. Phys. 43, 495201 (2010)
[4]Aita, T., Ogawa, K., Saito, Y., Sumiyoshi, Y., Higuchi, T., Sato, S., Surf. Coat. Technol. 205, 861 (2010)
[5]Xiong, Z., Lu, X. P., Feng, A., Pan, Y., Ostrikov, K., Phys. Plasmas 17, 123502 (2010)
[6]Kim, S.J., Chung, T.H., Bae, S.H., Leem, S.H., Appl. Phys. Lett. 97, 023702 (2010)
[7]Zhou, X., Xiong, Z., Cao, Y., Lu, X., Lu, D., IEEE Trans. Plasma Sci. 38, 3370 (2010)
[8]Kim, J.Y., Wei, Y., Li, J., Foy, P., Hawkins, T., Ballato, J., Kim, S.-O, Small 7, 2291 (2011)
[9]Kong, M.G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., van Dijk, J., Zimmermann, J.L., New J. Phys. 11, 115012 (2009)
[10]Zhang, X., Li, M., Zhou, R., Feng, K., Yang, S., Appl. Phys. Lett. 93, 021502 (2008)
[11]Goree, J., Liu, B., Drake, D., J. Phys. D: Appl. Phys. 39, 3479 (2006)
[12]Lu, X., Jiang, Z., Xiong, Q., Tang, Z., Pan, Y., Appl. Phys. Lett. 92, 151504 (2008)
[13]Lu, X., Cao, Y., Yang, P., Xiong, Q., Xiong, Z., Xian, Y., Pan, Y., IEEE Trans. Plasma Sci. 37, 668 (2009)
[14]Bussiahn, R., Brandenburg, R., Gerling, T., Kindel, E., Lange, H., Lembke, N., Weltmann, K.-D., Von Woedtke, Th., Kocher, T., Appl. Phys. Lett. 96, 143701 (2010)
[15]Li, X., Yuan, N., Jia, P., Chen, J., Phys. Plasmas 17, 093504 (2010)
[16]Hsu, C.-C., Yang, Y.-J., IEEE Trans. Plasma Sci. 38, 496 (2010)
[17]Wu, S., Lu, X., Xiong, Z., Pan, Y., IEEE Trans. Plasma Sci. 38, 3404 (2010)
[18]Lu, X., Xiong, Z., Zhao, F., Xian, Y., Xiong, Q., Gong, W., Zou, C., Jiang, Z., Pan, Y., Appl. Phys. Lett. 95, 181501 (2009)
[19]Kolb, J.F., Mohamed, A.-A. H., Price, R.O., Swanson, R.J., Bowman, A., Chiavarini, R.L., Stacey, M., Schonenbach, K.H., Appl. Phys. Lett. 92, 241501 (2008)
[20]Deng, X.T., Shi, J.J., Kong, M.G., J. Appl. Phys. 101, 074701 (2007)
[21]Morfill, G.E., Kong, M.G., Zimmermann, J.L., New. J. Phys. 11, 115011 (2009)
[22]Eto, H., Ono, Y., Ogino, A., Nagatsu, M., Appl. Phys. Lett. 93, 221502 (2008)
[23]Song, Y., Liu, D., Ji, L., Wang, W., Niu, J., Zhang, X., IEEE Trans. Plasma Sci. 40, 1098 (2012)
[24]Sands, B.L., Ganguly, B.N., Tachibana, K., Appl. Phys. Lett. 92, 151503 (2008)
[25]Zhu, Y., Takada, T., Inoue, Y., Tu, D., IEEE Trans. Dielectr. Electr. Insul. 3, 460 (1996)
[26]Li, X., Yuan, N., Jia, P., Chen, J., Phys. Plasma 17, 093504 (2010)
[27]Sakamoto, T., Matsuura, H., Akatsuka, H., J. Appl. Phys. 101, 023307 (2007)
[28]Bibinov, N.K., Fateev, A.A., Wiesemann, K., J. Phys. D: Appl. Phys. 34, 1819 (2001)
[29]Linss, V., Kupfer, H., Peter, S., Richter, F., J. Phys. D: Appl. Phys. 37, 1935 (2004)
[30]Lu, X., Jiang, Z., Xiong, Q., Tang, Z., Hu, X., Pan, Y., Appl. Phys. Lett. 92, 81502 (2008)
[31]Little, U., Buchana, F., Harkin-Jones, E., Graham, B., Fox, B., Boyd, A., Meenan, B., Dickson, G., Acta Biomater. 5, 2025 (2009)
[32]Niu, J., Liu, D., Chen, J., Ding, H., Wu, Y., Eur. Phys. J. Appl. Phys. 57, 1080 (2012)
[33]Sarra-Bournet, C., Turgeon, S., Mantovani, D., Laroche, G., Plasma Processes Polym. 3, 506 (2006)
[34]Sarra-Bournet, C., Turgeon, S., Mantovani, D., Laroche, G., J. Phys. D: Appl. Phys. 39, 3461 (2006)
[35]Beamson, G., Briggs, D., High Resolution XPS of Organic Polymers (Wiley, Chichester, 1992)
[36]Liu, D., Niu, J., Yu, N., J. Vac. Sci. Technol. A 29, 061506 (2011)
[37]Sakamoto, C., Ayotte, G., Turgeon, S., Massines, F., Laroche, G., Langmuir 25, 9432 (2009)
[38]Niu, J., Liu, D., Chen, J., Ding, H., Wu, Y., Eur. Phys. J. Appl. Phys. 57, 10801 (2012)
[39]Wang, D., Zhao, D., Feng, K., Zhang, X., Liu, D., Yang, S., Appl. Phys. Lett. 98, 161501 (2011)
[40]Laroussi, M., Leipold, F., Int. J. Mass Spectrom. 233, 81 (2004)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed