Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T18:20:48.382Z Has data issue: false hasContentIssue false

Study of the transmembrane potential distribution of cell pairs in a microfluidic device using polymer obstacles to initiate electrofusion

Published online by Cambridge University Press:  11 April 2013

Feriel Sihem Hamdi
Affiliation:
École Normale Supérieure de Cachan, CNRS, Laboratoire Systémes et Applications des Technologies de l’Information et de l’Énergie, UMR 8029, 94235 Cachan cedex, France University Paris-Sud, CNRS, Institut d’Électronique Fondamentale, UMR 8622, 91405 Orsay cedex, France
Olivier Français
Affiliation:
École Normale Supérieure de Cachan, CNRS, Laboratoire Systémes et Applications des Technologies de l’Information et de l’Énergie, UMR 8029, 94235 Cachan cedex, France
Frédéric Subra
Affiliation:
École Normale Supérieure de Cachan, CNRS, Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113, 94235 Cachan cedex, France
Wei Wang
Affiliation:
École Normale Supérieure de Cachan, CNRS, Laboratoire Systémes et Applications des Technologies de l’Information et de l’Énergie, UMR 8029, 94235 Cachan cedex, France
Marion Woytasik
Affiliation:
University Paris-Sud, CNRS, Institut d’Électronique Fondamentale, UMR 8622, 91405 Orsay cedex, France
Elisabeth Dufour-Gergam
Affiliation:
University Paris-Sud, CNRS, Institut d’Électronique Fondamentale, UMR 8622, 91405 Orsay cedex, France
Bruno Le Pioufle*
Affiliation:
École Normale Supérieure de Cachan, CNRS, Laboratoire Systémes et Applications des Technologies de l’Information et de l’Énergie, UMR 8029, 94235 Cachan cedex, France
Get access

Abstract

In this paper, we investigate the different parameters that affect the distribution of the transmembrane potential of cells brought into contact before electrofusion in a miniaturized fluidic device. In particular, we discuss the deviation of the effective transmembrane voltage compared to the one predicted by Schwan’s law. The application of electric field pulses to biological cells induces a transmembrane potential which leads to cell permeabilization. Electrofusion occurs when several cells are brought into contact while they are electropermeabilized. Nevertheless, we show that in this case, the mutual presence of cells interferes on Schwan’s equation. Consequently, the transmembrane voltage at the cell contacting point is drastically reduced, which is not favorable for an electrofusion in smooth conditions, as the applied voltage needs to be increased to compensate this phenomenon. We show that the introduction of polymer obstacles reverses this trend, as the high electric field region is focused on the fusion zone. To confirm the theory we developed, quantitative biological experiments are presented in which murine melanoma cells were paired and fused in both conditions (with and without obstacles).

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Köhler, G., Milstein, C., Nature 256, 495 (1975)CrossRef
Sukhorukov, V.L., Reuss, R., Endter, J.M., Fehrmann, S., Katsen-Globa, A., Gessner, P., Steinbach, A., Müller, K.J., Karpas, A., Zimmermann, U., Zimmermann, H., Biochem. Biophys. Res. Commun. 346, 829 (2006)CrossRef
Yasuda, T., Kamigaki, T., Kawasaki, K., Nakamura, T., Yamamoto, M., Kanemitsu, K., Takase, S., Kuroda, D., Kim, Y., Ajiki, T., Kuroda, Y., Cancer Immunol. Immunother. 56, 1025 (2007)CrossRef
Kikuchi, T., Akasaki, Y., Irie, M., Homma, S., Abe, T., Ohno, T., Cancer Immunol. Immunother. 50, 337 (2001)CrossRef
Wei, Y.C., Sticca, R.P., Li, J., Holmes, L.M., Burgin, K.E., Jakubchak, S., Bouton-Verville, H., Williamson, J., Meyer, K., Evans, L., Martin, J., Stephenson, J.J., Trocha, S., Smith, S., Wagner, T.E., Oncol. Rep. 18, 665 (2007)
Märten, A., Renoth, S., Heinicke, T., Albers, P., Pauli, A., Mey, U., Caspari, R., Flieger, D., Hanfland, P., Von Ruecker, A., Eis-Hübinger, A.M., Müller, S., Schwaner, I., Lohmann, U., Heylmann, G., Sauerbruch, T., Schmidt-Wolf, I.G., Hum. Gene Ther. 14, 483 (2003)CrossRef
Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., Tada, T., Curr. Biol. 11, 1553 (2001)CrossRef
Pontecorvo, G., Somat. Cell Mol. Genet. 1, 397 (1975)CrossRef
Okada, Y., Biken Journal 1, 103 (1958)
Finaz, C., Lefevre, A., Teissie, J., Exp. Cell Res. 150, 477 (1984)CrossRef
Skelley, A.M., Kirak, O., Suh, H., Jaenisch, R., Voldman, J., Nat. Methods 6, 147 (2009)CrossRef
Zimmermann, D., Terpitz, U., Zhou, A., Reuss, R., Müller, K., Sukhorukov, V.L., Gebner, P., Nagel, G., Zimmermann, U., Bamberg, E., Biochem. Biophys. Res. Commun. 348, 673 (2006)CrossRef
Trevor, K.C., Yvette, C.R., Emmanuel, A., Evan, H., Didier, L., Rachel, T., Alan, K., Richard, W., Cancer Immunol. Immunother. 53, 705 (2004)CrossRef
Trefzer, U., Herberth, G., Wohlan, K., Milling, A., Thiemann, M., Sharav, T., Sparbier, K., Sterry, W., Walden, P., Vaccine 23, 2367 (2005)CrossRef
Tanaka, H., Shimizu, K., Hayashi, T., Shu, S., Cell. Immunol. 220, 1 (2002)CrossRef
Masuda, S., Washizu, M., Nanba, T., IEEE Trans. Ind. Appl. 25, 732 (1989)CrossRef
Techaumnat, B., Washizu, M., J. Phys. D: Appl. Phys. 40, 1931 (2007)CrossRef
Kirschbaum, M., Guernth-Marschner, C.R., Cherré, S., de Pablo Pena, A., Jaeger, M.S., Kroczek, R.A., Schnelle, T., Mueller, T., Duschl, C., Lab Chip. 12, 443 (2012)CrossRef
Gel, M., Kimura, Y., Kurosawa, O., Oana, H., Kotera, H., Washizu, M., Biomicrofluidics 4, 022808 (2010)CrossRef
Gel, M., Suzuki, S., Kimura, Y., Kurosawa, O., Techaumnat, B., Oana, H., Washizu, M., IEEE Trans. Nanobiosci. 8, 300 (2009)CrossRef
Frenea, M., Faure, S.P., Le Pioufle, B., Coquet, Ph., Fujita, H., Mat. Sci. Eng. C: Biomim. Supramol. Syst. 23, 597 (2003)CrossRef
Pham Van, N., Villemejane, J., Hamdi, F., Mottet, G., Dalmay, C., Woytasik, M., Martincic, E., Dufour-Gergam, E., Français, O., Mir, L.M., Le Pioufle, B., Proc. Eurosensors XXIV, Linz, Austria, 2010
Cummings, E.B., Singh, A.K., Anal. Chem. 75, 4724 (2003)CrossRef
Moncada-Hernandez, H., Baylon-Cardiel, J.L., Perez-Gonzalez, V.H., Lapizco-Encinas, B.H., Electrophoresis 32, 2502 (2011)CrossRef
Baylon-Cardiel, J.L., Lapizco-Encinas, B.H., Reyes-Betanzo, C., Chavez-Satonscoy, A.V., Martinez-Chapa, S.O., Lab Chip. 9, 2896 (2009)CrossRef
Schwan, H.P., Adv. Biol. Med. Phys. 5, 147 (1957)CrossRef
Neumann, E., Sowers, A.E., Jordan, C.A., Electroporation and Electrofusion in Cell Biology (Plenum Press, New York, 1989)CrossRefGoogle Scholar
Halfmann, H.J., Röcken, W., Emeis, C.C., Zimmermann, U., Curr. Genet. 6, 25 (1982)CrossRef
Gimsa, J., Wachner, D., Biophys. J. 81, 1888 (2001)CrossRef
Sukhorukov, V.L., Mussauer, H., Zimmermann, U., J. Membr. Bio. 163, 235 (1998)CrossRef
Washizu, M., Techaumnat, B., J. Electrostat. 65, 555 (2007)CrossRef
Lee, S.-W., Tai, Y.-C., Sens. Actuators 73, 74 (1999)CrossRef
Tekle, E., Astumian, R.D., Chock, P.B., Proc. Natl. Acad. Sci. USA 88, 4230 (1991)Google Scholar
Ozil, J.-P., Modlinski, J.A., J. Embryol. Exp. Morph. 96, 211 (1986)
Zimmermann, U., Arnold, W.M., J. Electrostat. 21, 309 (1988)CrossRef
Kleber, A.G., Circ. Res. 52, 442 (1983)CrossRef
Golzio, M., Tessié, J., Rols, M.-P., PNAS 99, 1292 (2002)Google Scholar
Dalmay, C., Villemejane, J., Joubert, V., Francais, O., Mir, L.M., Le Pioufle, B., Sens. Actuators B Chem. 160, 1573 (2011)CrossRef
Jones, T.B., Electromechanics of Particles, Vol. 265, (Cambridge University Press, Cambridge, UK, 1995)CrossRefGoogle Scholar
Hamdi, F., Français, O., Dufour-Gergam, E., Le Pioufle, B., Nanobiotech (Montreux, Switzerland, 2011)Google Scholar
Fricke, H., J. Appl. Phys. 24, 575 (1924)
Gagnon, Z.R., Electrophoresis 32, 2466 (2011)CrossRef