Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-09T16:11:18.382Z Has data issue: false hasContentIssue false

Structural, electronic and magnetic properties of Fe, Co, Ni monatomic nanochains encapsulated in BeO nanotubes bundle

Published online by Cambridge University Press:  14 February 2014

Masoud Shahrokhi*
Affiliation:
Physics Department, Faculty of Science, Razi University, Kermanshah, Iran Nano Science and Technology Research Center, Razi University, Kermanshah, Iran
Rostam Moradian
Affiliation:
Physics Department, Faculty of Science, Razi University, Kermanshah, Iran Nano Science and Technology Research Center, Razi University, Kermanshah, Iran Computational Physical Science Research Laboratory, Department of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran, Iran
Get access

Abstract

First-principles calculations have been performed to determine the structural, electronic and magnetic properties of transition metal TM (TM = Fe, Co and Ni) monatomic nanochain encapsulated inside and between (9, 0) beryllium oxide nanotube (BeONT) bundle. The generalized gradient approximation (GGA) was employed to describe the exchange-correlation potential. Our results show that the geometrical structure of the BeONT bundle is significantly changed after encapsulating TM nanochains. All configurations of TM chains @ (9, 0) BeONTs bundle systems have negative formation energy so they are stable and exothermic. Total density of states and partial densities of states analyses show that the spin polarization and the magnetic moment of TM chains @ BeONT systems come mostly from the TM atoms chain. The values of total and partial magnetic moment, spin polarization and Stoner parameter are calculated for all configurations of TM chains @ (9, 0) BeONTs bundle systems.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, H., Zhao, N., He, C., Shi, C., Du, X., Li, J., J. Alloys Compd. 465, 51 (2008)CrossRef
Ivanovskaya, V.V., Khler, C., Seifert, G., Phys. Rev. B 75, 075410 (2007)CrossRef
Iijima, S., Nature 345, 56 (1991)CrossRef
Sun, X.H., Li, C.P., Wong, W.K., Wong, N.B., Lee, C.S., Lee, S.T., Teo, B.K., J. Am. Chem. Soc 124, 14464 (2002)CrossRef
Lee, R.S., Tibault, J., Willaime, F., Phys. Rev. B 64, 121405 (2001)CrossRef
Xing, Y.J., Xi, Z.H., Zhang, X.D., Song, J.H., Wang, R.M., Xu, J., Xue, Z.Q., Yu, D.P., Solid State Commun. 129, 671 (2004)CrossRef
Wei, A., Sun, X.W., Xu, C.X., Dong, Z.L., Yu, M.B., Huang, W., Appl. Phys. Lett. 88, 213102 (2006)CrossRef
Enyashin, A.N., Shein, I.R., Ivanovskii, A.L., Phys. Rev. B 75, 193408 (2007)CrossRef
Shein, I.R., Enyashin, A.N., Ivanovskii, A.L., Phys. Rev. B 75, 245404 (2007)CrossRef
Sorokin, P.B., Fedorov, A.S., Chernozatonskii, L.A., Phys. Solid State 48, 398 (2006)CrossRef
Baumeier, B., Kruger, P., Pollmann, J., Phys. Rev. B 76, 085407 (2007)CrossRef
Delin, A., Tosatti, E., Phys. Rev. B 68, 144434 (2003)CrossRef
Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnr, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M., Science 294, 1488 (2001)CrossRef
Ataca, C., Cahangirov, S., Durgun, E., Jang, Y.R., Ciraci, S., Phys. Rev. B 77, 214413 (2008)CrossRef
Hamada, N., Sawada, S., Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992)CrossRef
Golberg, D., Xu, F.F., Bando, Y., Appl. Phys. A 76, 479 (2003)CrossRef
Tang, C., Bando, Y., Golberg, D., Ding, X., Qi, S., J. Phys. Chem. B 107, 6539 (2003)CrossRef
Han, W.Q., Chang, C.W., Zettl, A., Nano Lett. 4, 1355 (2004)CrossRef
Karmakar, S., Sharma, S.M., Mukadam, M.D., Yusuf, S.M., Sood, A.K., J. Appl. Phys. 97, 054306 (2005)CrossRef
Wang, S.F., Zhang, J.M., Xu, K.W., Physica B 405, 1035 (2010)CrossRef
Fagan, S.B., Mota, R., Silva, A.J.R.D., Fazzio, A., Phys. Rev. B 67, 205414 (2003)CrossRef
Yagi, Y., Briere, T.M., Sluiter, M.H.F., Kumar, V., Farajian, A.A., Kawazoe, Y., Phys. Rev. B 69, 075414 (2004)CrossRef
Zhang, J.M., Wang, X.C., Zhang, Y., Xu, K.W., Comput. Theor. Chem. 963, 273 (2011)CrossRef
Wang, S.F., Chen, L.Y., Zhang, Y., Zhang, J.M., Xu, K.W., Comput. Theor. Chem. 962, 108 (2010)
Xie, Y., Zhang, J.M., Physica E 44, 405 (2011)CrossRef
Yang, C.K., Zhao, J., Lu, J.P., Phys. Rev. B 74, 235445 (2006)CrossRef
Fagan, S.B., Mota, R., Silva, A.J.R.D., Fazzio, A., Microelectronics 34, 481 (2003)CrossRef
Moradian, R., Shahrokhi, M., Moradian, S., Physica E 47, 40 (2013)CrossRef
Naderi, S., Shahrokhi, M., Noruzi, H.R., Moradian, R., Eur. Phys. J. Appl. Phys. 62, 30402 (2013)CrossRef
Moradian, R., Behzad, S., Chegel, R., Physica B 403, 3623 (2008)CrossRef
Hohenberg, P., Kohn, W., Phys. Rev. B 136, 864 (1964)CrossRef
Kohn, W., Sham, L.J., Phys. Rev. A 140, 1133 (1965)CrossRef
Blaha, P., Schwarz, K. WIEN2k, Vienna University of Technology Austria (2002), http://www.wien2k.at/
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)CrossRef
Peterson, M., Wanger, F., Hufnagel, L., Scheer, M., Blaha, P., Schwarz, K., Comput. Phys. Commun. 126, 294 (2000)CrossRef
Monkhorst, H.J., Pack, J.D., Phys. Rev. B 13, 5188 (1976)CrossRef
Tung, J.C., Guo, G.Y., Phys. Rev. B 76, 094413 (2007)CrossRef
Ekman, M., Sadigh, B., Einarsdotter, K., Phys. Rev. B 58, 5296 (1998)CrossRef