Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T15:39:33.170Z Has data issue: false hasContentIssue false

Structural and electrical resistivity study of Mn-doped LaFe1-xMnxO3 (x ≤ 0.5) crystals

Published online by Cambridge University Press:  23 March 2012

Arfat Firdous*
Affiliation:
Department of Physics, Department of Higher Education, Govt. Degree College, Handwara, Jammu & Kashmir, India
M.M. Ahmad
Affiliation:
Department of Physics, National Institute of Technology, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
Get access

Abstract

LaFe1-xMnxO3 (x ≤ 0.5) polycrystals have been prepared using solid-state reaction technique and characterized by X-ray diffraction and electrical transport. XRD data suggest orthorhombic structure for both pure and Mn-doped compositions with space group Pbnma. However, unit cell dimensions are found to decrease with increase in Mn concentration. Resistivity data have been fitted with variable range hopping (VRH) model, from which different parameters like density of state at Fermi level N(Ef), hopping energy (Eh), and hopping distance (Rh) were estimated. It was observed that substitution of Mn in the series leads to the increase in conductivity of the samples with conduction being controlled by the disorder-induced localization of charge carriers.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zaanen, J., Sawatzky, G.A., Aleen, J.W., Phys. Rev. Lett. 55, 418 (1985)CrossRef
Tiwari, A., J. Alloys and Compds. 274, 42 (1998)CrossRef
Koebler, W., Wallan, E., J. Phys. Chem. Solids 2, 100 (1957)CrossRef
Koebler, W., Wallan, E., Wilkinson, M., Phys. Rev. 118, 58 (1960)CrossRef
Treves, D., J. Appl. Phys. 36, 1033 (1965)CrossRef
Treves, D., Phys. Rev. 125, 1843 (1962)CrossRef
Jacob, P. I., Uarne, H., Lewnson, L., J. Appl.Phys. 42, 1631 (1971)CrossRef
Patil, S.A., Otari, S.M., Mahajan, V.C., Patil, M.G., Sovdagas, M.K., Patil, B.L., Swant, S.R., Solid StateCommun. 78, 39 (1991)
Bertaut, E.F., in Magnetism, vol. 3 (Academic Press, New York, 1963), p. 149Google Scholar
Horner, H., Varma, C.M., Phys. Rev. Lett. 20, 845 (1958)CrossRef
Yamaguchi, T., Tsushima, K., Phys. Rev. B8, 5187 (1973)CrossRef
Vassiliou, J.K. et al., Solid State Chem. 81, 208 (1989)CrossRef
Torrance, J.B. et al., Phys. Rev. B45, 8209 (1992)CrossRef
Hemeda, O.M. et al., J. Therm. Anal. 38, 2291 (1992)CrossRef
Rezlescu, E., Rezlescu, N., Popa, P.D., Rezlescu, L., Pasnicu, C., Phys. Status Solidi A 162, 673 (1997)3.0.CO;2-A>CrossRef
Goldschmidt, V.M., Naturwissenschaften 14, 477 (1926)CrossRef
Patil, B.L., Sawant, S.R., Patil, S.A., Patil, R.N., J. Mater. Sci. 29, 175 (1994)CrossRef
Dwerus, I.C., Maln, O.G., Thomson, A.W., Proc. Roy. Soc. A 275, 295 (1963)
Li, K., Li, X., Zhu, K., Zha, J., Zhang, Y., J. Appl. Phys. 81, 6943 (1997)
Roa, C., Chem. Appl. IR Spec. (Academic Press, New york, 1963), p. 356Google Scholar
Patakova, V.A., Zverv, N.D., Romanov, V.P., Phys. Status Solidi 12, 623 (1972)CrossRef
Mott, N.F., J. Non-Cryst. Solids 1, 1 (1968)CrossRef
Mott, N.F., Phil. Mag. 19, 835 (1969)CrossRef
Austin, I.G., Mott, N.F., Adv. Phys. 18, 41 (1969)CrossRef
Mott, N.F., Davis, E.A., Electronic Processes in Non Crystalline Materials, 2nd edn. Clarendon, Oxford, 1979)Google Scholar
Pi, L., Zhang, L., Zhang, Y., Phys. Rev. B 61, 8917 (2000)CrossRef