Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T09:33:39.626Z Has data issue: false hasContentIssue false

Steady state macroscopic model of the influence of water on the performances of a micro air-breathing fuel cell

Published online by Cambridge University Press:  31 May 2011

M. Zeidan*
Affiliation:
ENSEEIHT (École Nationale Supérieure d'Électrotechnique, d'Électronique, d'Hydraulique, et des Télécommunications), Laboratoire LAPLACE (Laboratoire PLAsma et Conversion d'Énergie), 2 rue Charles Camichel, BP 7122, 31071 Toulouse Cedex 7, France
Ch. Turpin
Affiliation:
CNRS, Laboratoire LAPLACE, ENSEEIHT,, BP 7122, 2 rue Charles Camichel, 31071 Toulouse Cedex 7, France
F. Cantin
Affiliation:
STMicroelectronics, 16 rue Pierre et Marie Curie, 37100 Tours, France
S. Astier
Affiliation:
ENSEEIHT-INPT, Laboratoire LAPLACE, 31071 Toulouse, France
Get access

Abstract

Water management is one of the most crucial issues to drive PEM fuel cells. The challenge is enhanced in the case of micro air-breathing proton exchange membrane fuel cells (μABFC): their thinness and their reduced surface indeed make their hydration state fast changing and very sensitive to the experimental conditions (temperature and relative humidity (RH)). It can lead to strong flooding or drying out issues. Firstly, this study highlights this sensitivity by various measurements. Then a steady state macroscopic model for the μABFC is proposed, focusing on the cathode, using a rather original approach for diffusion in porous media. Finally, a literal steady state formula for the water content is provided, and its influences on the performances of the μABFC are explicitly proposed. The model is parameterized and compared to measures in several atmospheric conditions.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nam, J.H., Lee, K.J., Hwang, G.S., Kim, C.J., Kaviany, M., Int. J. Heat Mass Transfer 52, 2779 (2009) CrossRef
Yan, Q., Toghiani, H., Wu, J., J. Power Sources 158, 316 (2006) CrossRef
Karst, N., Faucheux, V., Martinent, A., Bouillon, P., Laurent, J.-Y., Druart, F., Simonato, J.-P., J. Power Sources 195, 1156 (2010) CrossRef
Wang, Z.H., Wang, C.Y., Chen, K.S., J. Power Sources 94, 40 (2001) CrossRef
Chang, M.H., Chen, F., Teng, H.S., J. Power Sources 160, 268 (2006) CrossRef
You, L., Liu, H., Int. J. Heat Mass Transfer 45, 2277 (2002) CrossRef
Wang, Q., Eikerling, M., Song, D., Liu, Z.S., J. Electrochem. Soc. 154, F95 (2007) CrossRef
Matamoros, L., Brüggemann, D., J. Power Sources 161, 203 (2006) CrossRef
Das, P.K., Li, X., Liu, Z.S., Int. J. Hydrogen Energy 35, 2403 (2010) CrossRef
Wang, Y., Feng, X., J. Electrochem. Soc. 155, B1289 (2008) CrossRef
Wang, Y., Feng, X., J. Electrochem. Soc. 156, B403 (2009) CrossRef
Santarelli, M.G., Torchio, M.F., Cochis, P., J. Power Sources 159, 824 (2006) CrossRef
Jiao, K., Li, X., Int. J. Hydrogen Energy 34, 8171 (2009) CrossRef
Berning, T., Djilali, N., J. Electrochem. Soc. 150, A1589 (2003) CrossRef
Jalani, N.H., Choi, P., Datta, R., J. Membr. Sci. 254, 31 (2005) CrossRef
Nazarov, I., Promislow, K., J. Electrochem. Soc. 154, B623 (2007) CrossRef
Yan, Q., Toghiani, H., Wu, J., J. Power Sources 158, 316 (2006) CrossRef
Majsztrik, P., Bocarsly, A., Benziger, J., J. Phys. Chem. B 112, 16280 (2008) CrossRef
Choi, P., Datta, R., J. Electrochem. Soc. 150, E601 (2003) CrossRef
Liu, X., Guo, H., Ye, F., Ma, C.F., Electrochim. Acta 52, 3607 (2007) CrossRef
Liu, X., Guo, H., Ye, F., Ma, C.F., J. Power Sources 156, 267 (2006) CrossRef
Tüber, K., Pócza, D., Hebling, C., J. Power Sources 124, 403 (2003) CrossRef
Lee, Y., Kim, B., Kim, Y., Int. J. Hydrogen Energy 34, 7768 (2009) CrossRef
Turhan, A., Heller, K., Brenizer, J.S., Mench, M.M., J. Power Sources 160, 1195 (2006) CrossRef
Zhang, J., Kramer, D., Shimoi, R., Ono, Y., Lehmann, E., Wokaun, A., Shinohara, K., Scherer, G., Electrochim. Acta 51, 2715 (2006) CrossRef
St-Pierre, J., J. Electrochem. Soc. 154, B724 (2007) CrossRef
Chen, Y.S., Peng, H., J. Power Sources 185, 1179 (2008) CrossRef
Luo, G., Ju, H., Wang, C.Y., J. Electrochem. Soc. 154, B316 (2007) CrossRef
Karst, N., Faucheux, V., Martinent, A., Bouillon, P., Laurent, J.-Y., Druart, F., Simonato, J.-P., J. Power Sources 195, 1156 (2010) CrossRef
N. Karst, Ph.D. thesis, CEA Liten, Grenoble, 2009
T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, J. Electrochem. Soc. 138, (1991)
Wang, Y., Feng, X., J. Electrochem. Soc. 156, B403 (2009) CrossRef
Chen, Y.S., Peng, H., J. Power Sources 185, 1179 (2008) CrossRef
C. Gondrand, Ph.D. thesis, INPT, Toulouse, 2006
Mezedur, M.M., Kaviany, M., Moore, W., AIChE J. 48, 15 (2002) CrossRef
R. Lefebvre, Écoulement Multiphase en milieu poreux (INRS-Presses de l'Université du Québec, 2003), Chap. 4, p. 145
Yousfi-Steiner, N., Moçotéguy, Ph., Candusso, D., Hissel, D., Hernandez, A., Aslanides, A., J. Power Sources 183, 260 (2008) CrossRef
Nam, J.H., Kaviany, M., Int. J. Heat Mass Transfer 46, 4595 (2003) CrossRef
F. Debaste, Ph.D thesis, ULB, Bruxelles, 2008
Thampan, T., Malhotra, S., Tang, H., Datta, R., J. Electrochem. Soc. 147, 3242 (2000) CrossRef
Luo, G., Ju, H., Wang, C.Y., J. Electrochem. Soc. 154, B316 (2007) CrossRef