Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T00:42:53.487Z Has data issue: false hasContentIssue false

Some biomedical applications of ferrofluids*

Published online by Cambridge University Press:  15 March 1999

J. Roger*
Affiliation:
Liquides Ioniques et Interfaces Chargées LI2C-UPMC, 4 place Jussieu, 75252 Paris Cedex 05, France
J. N. Pons
Affiliation:
Liquides Ioniques et Interfaces Chargées LI2C-UPMC, 4 place Jussieu, 75252 Paris Cedex 05, France
R. Massart
Affiliation:
Liquides Ioniques et Interfaces Chargées LI2C-UPMC, 4 place Jussieu, 75252 Paris Cedex 05, France
A. Halbreich
Affiliation:
Laboratoire des Milieux Désordonnés et Hétérogènes UPMC, 4 place Jussieu, 75252 Paris Cedex 05, France
J. C. Bacri
Affiliation:
Laboratoire des Milieux Désordonnés et Hétérogènes UPMC, 4 place Jussieu, 75252 Paris Cedex 05, France
Get access

Abstract

Ferrofluids are colloidal solutions of iron oxide magnetic nanoparticles in either a polar or no polar liquid. We present here two biological applications using maghemite (γFe2O3) ferrofluids: magnetic cell sorting and magnetocytolysis. The first application employs magnetic particles binding a biological effector, which is capable to recognize the target cells specifically. These cells become magnetic and can be sorted in a gradient of magnetic field. We describe first the various steps of the synthesis of a biocompatible ferrofluid and the grafting an effector protein onto the particles. We then describe the use of particles carrying annexin V in the separation and quantification of damaged erythrocytes in blood samples. This very sensitive technique can be used to follow the erythrocytes ageing of normal blood samples during their storage under blood bank conditions or to detect the membrane modifications that are associated with some pathologies such as malaria or Alzheimer's disease. The dependence of the magnetic susceptibility versus the frequency is a way to transform magnetic energy into thermal energy. Magnetocytolysis is the destruction of cells, carrying magnetic particles, through the action of an alternating magnetic field (about 1 MHz). We present here preliminary experiments with macrophages, which demonstrate the method's feasibility and the formation of the non-specific interactions between the cells and the magnetic particles.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was presented at "Journées Oxydes Magnétiques" held at Dijon the March 24-26, 1998.

References

Hasegawa, M., Hokkoku, S., US Patent 101, 435 (1978).
Dutton, A.H., Tokuyasu, K.T., Singer, J., Proc. Natl. Acad. Sci. USA 76, 3392 (1979). CrossRef
Griffin, T., Mosbach, K., Mosbach, R., Appl. Biochem. Biotechnol. 6, 283 (1981). CrossRef
Molday, R.S., Mackenzie, D., J. Immunol. Meth. 52, 353 (1982). CrossRef
Schröder, U., Mosbach, K., US Patent 501, 726 (1985).
K.J. Widder, A.E. Senyei, EU Patent, 0 016 552 A1 (1980).
J. Kandzia, W. Haas, G. Leyhausen, W. Müller-Ruchholtz, Intern. Meeting on Cell Electrophoresis, Rostock, 1984.
Renshaw, P.F., Owen, C.S., McLaughlin, A.C., Frey, T.G., Leigh Jr, J.S., Magn. Reson. Med. 3, 217 (1986). CrossRef
Whitehead, R.A., Chagnon, M.S., Groman, E.V., Josephson, L., US Patent 695, 392 (1987).
O. Masahisa, A. Yoshihiro, Y. Akira, O. Masao, Y. Katsuaki, N. Toshiomi, EU Patent, 0 420 186 A2.
C.H. Wang, D.O. Shah, Int. Patent, WO 91/09141 (1991).
Margolis, L.B., Namiot, V.A., Kijukin, L.M., Biochim. Biophys. Acta 735, 193 (1983). CrossRef
De Cuyper, M., Joniau, M., J. Magn. Magn. Mat. 122, 340 (1993). CrossRef
Massart, R., Cabuil, V., J. Chim. Phys. 84, 967 (1987). CrossRef
A. Bee, T. Bouchami, R. Brossel, V. Cabuil, M. Carpentier, J.M. Fruchart, R. Massart, S. Neveu, J.N. Pons, M. Robineau, J. Roger, French Patent, 90 06 484 (1990).
Fauconnier, N., Pons, J.N., Roger, J., Bee, A., Progr. Coll. Polym. Sci. 100, 212 (1996). CrossRef
Fauconnier, N., Pons, J.N., Roger, J., Bee, A., J. Coll. Interf. Sci. 194, 427 (1997). CrossRef
A. Halbreich, D. Sabolovic, C. Sestier, D. Geldwerth, J.N. Pons, J. Roger, French Patent, 95 07 865 (1995).
A. Halbreich, J. Roger, J.N. Pons, M.F. Da Silva, E. Hasmonay, M. Roudier, M. Boynard, C. Sestier, A. Amri, D. Geldwerth, B. Fertil, J.C. Bacri, D. Sabolovic, Scientific and Clinical Applications of Magnetic Carriers: An Overview. (Plenum Publishing Corporation, 1997), p. 399.
Sestier, C., Sabolovic, D., Geldwerth, D., Moumaris, M., Roger, J., Pons, J.N., Halbreich, A., C.R. Acad. Sci. Paris 318, 1141 (1995).
Halbreich, A., Sabolovic, D., Sestier, C., Amri, A., Pons, J.N., Roger, J., Geldwerth, D., Parasitology Today 12, 292 (1996). CrossRef
Sabolovic, D., Roudier, M., Boynard, M., Pautou, C., Sestier, C., Fertil, B., Geldwerth, D., Roger, J., Pons, J.N., Amri, A., Halbreich, A., J. Ger. Biol. Sci. 52A, B217 (1997). CrossRef
J.C. Bacri, M.F. da Silva, R. Perzynski, J.N. Pons, J. Roger, D. Sabolovic, A. Halbreich, Scientific and Clinical Applications of Magnetic Carriers: An Overview (Plenum Publishing Corporation, 1997), p. 597.
Halbreich, A., Roger, J., Pons, J.N., Geldwerth, D., da Silva, M.F., Roudier, M., Bacri, J.C., Biochimie 80, 379 (1998). CrossRef
M.F. da Silva, F. Gendron, J.C. Bacri, J. Roger, J.N. Pons, M. Robineau, D. Sabolovic, A. Halbreich, Scientific and Clinical Applications of Magnetic Carriers: An Overview (Plenum Publishing Corporation, 1997), p. 171.
R.H. Müller, Colloidal Carriers for Controlled Drug Delivery and Targeting CRC (Press Stuttgart, 1991).