Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T03:09:12.464Z Has data issue: false hasContentIssue false

A solid oxide fuel cell micro-scale modeling with spherical particle shaped electrodes

Published online by Cambridge University Press:  18 May 2011

P. Chinda*
Affiliation:
Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-utid Road, Bangmod, Thungkru, Bangkok10140, Thailand
S. Chanchaona
Affiliation:
Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-utid Road, Bangmod, Thungkru, Bangkok10140, Thailand
P. Brault
Affiliation:
Groupe de Recherche sur l’Énergétique des Milieux Ionisés (GREMI), UMR 6606 CNRS-Université d’Orléans, BP 6744, 45067Orléans Cedex 2, France
W. Wechsatol*
Affiliation:
Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-utid Road, Bangmod, Thungkru, Bangkok10140, Thailand
Get access

Abstract

A micro-scale model of a solid oxide fuel cell (SOFC) involving the mass transfer together with the electrochemical reaction, the electron and ion transports through the respective spherically shaped electron- and ion-conducting particles inside the electrodes was mathematically developed. Couples of useful dimensionless parameters were introduced in order to represent the characteristics of the cell. The predicted cell performance was showed according to various operating and design conditions. The effects of micro-scale electrode geometry on the cell performance were also taken into account. Parametric study according to the volumetric fraction of ionic and electronic conducting particles was conducted in order to examine the effects of operating conditions on the cell overpotentials. The study results substantiate the fact that SOFC overpotential could be effectively decreased by increasing the operating temperature as well as operating pressure. This present study reveals the working mechanisms of SOFC at the microscale level, while demonstrating the use of micro-scale relations to enhance the SOFC performance. The accuracy of the presented model was validated by comparing to already existing experimental results from the available literatures.

Type
Research Article
Copyright
© EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Singhal, S.C., Kendall, K., High Temperature Solid Oxide Fuel Cells: Fundamentals Design and Applications (Elsevier, Oxford, 2003)Google Scholar
Larminie, J., Dicks, A., Fuel Cell Systems Explained (John Wiley & Sons, Chichester, 2003)CrossRefGoogle Scholar
Ramakrishna, P.A., Yang, S., Sohn, C.H., J. Power Sources 158, 378 (2006)CrossRef
Koh, Y.H., Sun, J.J., Choi, W.Y., Kim, H.E., J. Power Sources 161, 1023 (2006)CrossRef
Yang, Y., Wang, G., Zhang, H., Xia, W., J. Power Sources 173, 233 (2007)CrossRef
Hwang, J.J., Chen, C.K., Lai, D.Y., J. Power Sources 140, 235 (2005)CrossRef
Hwang, J.J., Chen, C.K., Lai, D.Y., J. Power Sources 143, 75 (2005)CrossRef
Huijsmans, J.P.P., Van Berkel, F.P.F., Christie, G.M., J. Power Sources 71, 107 (1998)CrossRef
Choy, K., Bai, W., Charojrochkul, S., Steele, B.C.H., J. Power Sources 71, 361 (1998)CrossRef
Ralph, J.M., Schoeler, A.C., Krumpelt, M., J. Mater. Sci. 36, 1161 (2001)CrossRef
Steele, B.C.H., Solid State Ion. 134, 3 (2000)CrossRef
Rabat, H., Brault, P., Fuel Cells 8, 81 (2008)CrossRef
Beckel, D., Bieberle-Hutter, A., Harvey, A., Infortuna, A., Muecke, U.P., Prestat, M., Rupp, J.L.M., Gauckler, L.J., J. Power Sources 173, 325 (2007)CrossRef
Rezugina, E., Thomann, A.L., Hidalgo, H., Brault, P., Dolique, V., Tessier, Y.Surf. Coat. Technol. 204, 2376 (2010)CrossRef
Billard, A., Mercs, D., Perry, F., Frantz, C., Surf. Coat.Technol. 140, 225 (2001)CrossRef
Tanner, C.W., Fung, K.Z., Virkar, A.V., J. Electrochem. Soc. 144, 21 (1997)CrossRef
Sunde, S., J. Electrochem. Soc. 142, L50 (1995)CrossRef
Sunde, S., J. Electrochem. Soc. 143, 1123 (1996)CrossRef
Sunde, S., J. Electrochem. Soc. 143, 1930 (1996)CrossRef
Costamagna, P., Costa, P., Antonucci, V., Electrochim. Acta 43, 375 (1998)CrossRef
Chen, X.J., Chan, S.H., Khor, K.A., Electrochim. Acta 49, 1851 (2004)CrossRef
Deseure, J., Bultel, Y., Dessemond, L., Siebert, E., Electrochim. Acta 50, 2037 (2005)CrossRef
Hussain, M.M., Li, X., Dincer, I., J. Power Sources 161, 1012 (2006)CrossRef
Ni, M., Leung, M.K.H., Leung, D.Y.C., J. Power Sources 168, 369 (2007)CrossRef
Hussain, M.M., Li, X., Dincer, I., Int. J. Hydrogen Energy 34, 3134 (2009)CrossRef
Chan, S.H., Xia, Z.T., J. Electrochem. Soc. 148, A388 (2001)CrossRef
Chan, S.H., Chen, X.J., Khor, K.A., J. Electrochem. Soc. 151, A164 (2004)CrossRef
Yun, M., Yu, B., Xu, P., Wu, J., Can. J. Chem. Eng. 84, 301 (2006)CrossRef
Krishna, R., Wesselingh, J.A., Chem. Eng. Sci. 52, 861 (1997)CrossRef
Suwanwarangkul, R., Croiset, E., Fowler, M.W., Douglas, P.L., Entchev, E., Douglas, M.A., J. Power Sources 122, 9 (2003)CrossRef
Veldsink, J.W., van Damme, R.M.J., Versteeg, G.F., van Swaaij, W.P.M., Chem. Eng. J. 57, 115 (1995)
Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y., Yasuda, I.J. Power Sources, 86, 423 (2000)CrossRef
Lehnert, W., Meusinger, J., Thom, F., J. Power Sources 87, 57 (2000)CrossRef
Bird, R.B., Stewart, W.E., Lightfoot, E.N., Transport Phe-nomena, 2nd edn. (John Wiley & Sons, New York, 2001)Google Scholar
Gilat, A., Subramaniam, V., Numerical Methods for En-gineers and Scientists: An Introduction with Applications using MATLAB, 1st edn. (John Wiley & Sons Inc., USA, 2008)Google Scholar
Chan, S.H., Khor, K.A., Xia, Z.T., J. Power Sources 93, 130 (2001)CrossRef
Berger, C., Handbook of Fuel Cell Technology (Prentice Hall, Englewood Cliffs, NJ, 1968)Google Scholar
Rogers, W.A., Gemmen, R.S., Johnson, C., Prinkey, M., Shahnam, M., Fuel Cell Sci. Eng. Technol. ASME 517 (2003)
Chan, S.H., Xia, Z.T., J. Appl. Electrochem. 32, 339 (2002)CrossRef
Iwata, M., Hikosaka, T., Morita, M., Iwanari, T., Ito, K., Onda, K., Esaki, Y., Sakaki, Y., Nagata, S., Solid State Ion. 132, 297 (2000)CrossRef
Minh, N.Q., Takahashi, T., Science and Technology of Ceramic Fuel Cells (Elsevier Science, Amsterdam, 1995)Google Scholar
Tod, B., Young, J.B., J. Power Sources 110, 186 (2002)CrossRef