Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T17:25:36.168Z Has data issue: false hasContentIssue false

Resistive switching of Pt/ZrO2/YBa2Cu3O7 sandwiches

Published online by Cambridge University Press:  03 March 2014

Zheng Wen
Affiliation:
National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, P.R. China College of Physics, Qingdao University, Qingdao 266071, P.R. China
Kun Li
Affiliation:
National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, P.R. China
Di Wu*
Affiliation:
National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, P.R. China
Aidong Li
Affiliation:
National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, P.R. China
*
Get access

Abstract

Resistive switching characteristics of Pt/ZrO2/YBa2Cu3O7 sandwiches are investigated for nonvolatile memory applications. Reproducible bipolar resistance switching with an on/off current ratio about 60 and long data retention are achieved. The conduction mechanism obeys Schottky emission in the low resistance state, while Poole-Frankel conduction is predominant in the high resistance state. The resistance switching of Pt/ZrO2/YBa2Cu3O7 sandwiches can be ascribed to migration and redistribution of oxygen vacancies around the ZrO2/YBa2Cu3O7 interface, which switches the conduction between the interface-controlled and the bulk-controlled mechanisms.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Waser, R., Aono, M., Nat. Mater. 6, 833 (2007)CrossRef
Cho, B., Song, S.H., Ji, Y.S., Kim, T.W., Lee, T., Adv. Funct. Mater. 21, 2806 (2011)CrossRef
Ventra, M.D., Pershin, Y.V., Mater. Today 14, 12 (2011)CrossRef
Jia, Z., Wang, L.K., Zhang, N.W., Ren, T.L., Liou, J.J., Appl. Phys. Lett. 102, 042901 (2013)CrossRef
Goux, L., Degraeve, R., Meersschaut, J., Govreanu, B., Wouters, D.J., Kubicek, S., Jurczak, M., J. Appl. Phys. 113, 054505 (2013)CrossRef
Liu, Q., Long, S.B., Lv, H.B., Wang, W., Niu, J.B., Huo, Z.L., Chen, J.N., Liu, M., ACS Nano 4, 6162 (2010)CrossRef
Wu, X., Zhou, P., Li, J., Chen, L.Y., Lv, H.B., Lin, Y.Y., Tang, T.A., Appl. Phys. Lett. 90, 183507 (2007)CrossRef
Lee, D., Choi, H., Sim, H., Choi, D., Hwang, H., Lee, M.J., Seo, S.A., Yoo, I.K., IEEE Electron Device Lett. 26, 719 (2005)CrossRef
Liu, Q., Guan, W.H., Long, S.B., Jia, R., Liu, M., Chen, J.N., Appl. Phys. Lett. 92, 012117 (2008)CrossRef
Wu, M.C., Wu, T.H., Tseng, T.Y., J. Appl. Phys. 111, 014505 (2012)CrossRef
Wang, S.Y., Lee, D.Y., Tseng, T.Y., Lin, C.Y., Appl. Phys. Lett. 95, 112904 (2009)CrossRef
Guan, W., Long, S., Jia, R., Liu, M., Appl. Phys. Lett. 91, 062111 (2007)CrossRef
Sun, B., Liu, Y.X., Liu, L.F., Xu, N., Wang, Y., Liu, X.Y., Han, R.Q., Kang, J.F., J. Appl. Phys. 105, 061630 (2009)CrossRef
Kwon, D.H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.S., Park, G.S., Lee, B., Han, S.W., Kim, M., Hwang, C.S., Nature Nanotechnol. 5, 148 (2010)CrossRef
Kim, K.M., Choi, B.J., Lee, M.H., Kim, G.H., Song, S.J., Seok, J.Y., Yoon, J.H., Han, S., Hwang, C.S., Nanotechnol. 22, 254010 (2011)CrossRef
Yan, X.B., Xia, Y.D., Xu, H.N., Gao, X., Li, H.T., Li, R., Yin, J., Liu, Z.G., Appl. Phys. Lett. 97, 112101 (2010)CrossRef
Sawa, A., Mater. Today 11, 28 (2008)CrossRef
Li, K., Wu, Z.W.D., Zhai, H.F., Li, A.D., J.Phys D Appl. Phys. 46, 035308 (2013)CrossRef
Lin, M.H., Wu, M.C., Lin, C.H., Tseng, T.Y., J. Appl. Phys. 107, 124117 (2010)CrossRef
Wu, J.X., Wen, Z., Wu, D., Zhai, H.F., Li, A.D., J. Alloys Compd. 509, 2050 (2011)CrossRef
Kim, J., Ko, C., Frenzel, A., Ramanathan, S., Hoffman, J.E., Appl. Phys. Lett. 96, 213106 (2010)CrossRef
Sakai, J., Kurisu, M., Phys. Rev. B 78, 033106 (2008)CrossRef
Liao, Z.L., Wang, Z.Z., Meng, Y., Liu, Z.Y., Gao, P., Gang, J.L., Zhao, H.W., Liang, X.J., Bai, X.D., Chen, D.M., Appl. Phys. Lett. 94, 253503 (2009)CrossRef
Harada, T., Ohkubo, I., Tsubouchi, K., Kumigashira, H., Ohnishi, T., Lippmaa, M., Matsumoto, Y., Koinuma, H., Oshima, M., Appl. Phys. Lett. 92, 222113 (2008)CrossRef
Yang, R., Li, X.M., Phys. Stat. Sol. A 208, 1041 (2011)CrossRef
Yang, R., Li, X.M., Yu, W.D., Gao, X.D., Shang, D.S., Liu, X.J., Cao, X., Wang, Q., Chen, L.D., Appl. Phys. Lett. 95, 072105 (2009)CrossRef
Long, S., Lian, X., Ye, T., Cagli, C., Perniola, L., Miranda, E., Liu, M., Suñé, J., IEEE Electron Device Lett. 34, 623 (2013)CrossRef
Long, S., Cagli, C., Ielmini, D., Liu, M., Suñé, J., IEEE Electron Device Lett. 32, 1570 (2011)CrossRef
Long, S., Cagli, C., Ielmini, D., Liu, M., Suñé, J., J. Appl. Phys. 111, 074508 (2012)CrossRef
Shin, D.S., Lee, H.N., Lee, C.W., Kim, Y.K., Choi, I.H., Jpn J. Appl. Phys. 37, 5189 (1998)CrossRef
Ding, H., Virkar, A.V., Liu, F., Solid State Ion. 215, 16 (2012)CrossRef
Jiang, W., Noman, M., Lu, Y.M., Bain, J.A., Salvador, P.A., Skowronski, M., J. Appl. Phys. 110, 034509 (2011)CrossRef
Nieuwenhuys, B.E., Aardenne, O.G.V., Sachtler, W.M.H., Chem. Phys. 5, 418 (1974)CrossRef
Chen, Y.S., Chen, B., Gao, B., Chen, L.P., Lian, G.J., Liu, L.F., Wang, Y., Liu, X.Y., Kang, J.F., Appl. Phys. Lett. 99, 072113 (2011)CrossRef