Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T00:04:58.829Z Has data issue: false hasContentIssue false

Raman investigation of stress and phase transformation induced in silicon by indentation at high temperatures

Published online by Cambridge University Press:  15 July 2004

S. Kouteva-Arguirova*
Affiliation:
BTU Cottbus, LS Experimentalphysik II, Universitätsplatz 3-4, 03044 Cottbus, Germany IHP/ BTU JointLab, Universitätsplatz 3-4, 03044 Cottbus, Germany
V. Orlov
Affiliation:
IHP/ BTU JointLab, Universitätsplatz 3-4, 03044 Cottbus, Germany Institute of Solid State Physics of RAS, 142432 Chernogolovka, Moscow distr., Russia
W. Seifert
Affiliation:
IHP/ BTU JointLab, Universitätsplatz 3-4, 03044 Cottbus, Germany IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
J. Reif
Affiliation:
BTU Cottbus, LS Experimentalphysik II, Universitätsplatz 3-4, 03044 Cottbus, Germany IHP/ BTU JointLab, Universitätsplatz 3-4, 03044 Cottbus, Germany
H. Richter
Affiliation:
IHP/ BTU JointLab, Universitätsplatz 3-4, 03044 Cottbus, Germany IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
Get access

Abstract

To study the material deterioration at and around the support contacts during processing of silicon wafers, we used Rockwell indentation at elevated temperatures as a model. Cz-silicon was subjected for 30 s to a load of 1.5 N, at temperatures between 70 °C and 660 °C. The resulting morphology was checked by Scanning Electron Microscopy. Micro Raman Spectroscopy was used to monitor residual stress and the occurrence of silicon polymorphs. We found strong compressive stress inside the indented area, with a dramatic drop and reversal to tensile stress at its boundary. The morphology shows a top hat profile, covered with a mesh of vein-like structures. Crystalline phases such as Si-III, Si-IV, Si-XII, and amorphous silicon are observed. Outside the spot, the situation depends strongly on the indentation temperature. Up to 400 °C the material appears practically unstressed, with a high density of relaxation cracks. At 500 °C and 600 °C a transition is found from strong tensile stress at the boundary to another region of compressive stress extending over more than 40 μm, associated with a significantly lower crack density. At still higher temperature (660 °C) the crack density tends to zero, and comparably weak stress seams to oscillate between compressive and tensile.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fischer, A., Richter, H., Kürner, W., Kücher, P., J. Appl. Phys. 87, 1543 (2000) CrossRef
J. Niess, W. Dietl, O. Altug, W. Lerch, H. D. Geiler, H. Karge, in Proceedings of the 199th ECS Meeting, Rapid Thermal and Other Short-Time Processing Technologies II, edited by D. L. Kwong, K. Reid, M. C. Ozturk, P. J. Timans, F. Roozeboom (PV 2001-9, Washington, DC, Spring 2001), 79
Puech, P., Pinel, S., Jasinevicius, R., Pizani, P., J. Appl. Phys. 88, 4582 (2000) CrossRef
Gridneva, I. V., Milman, Yu. V., Trefilov, V. I., Phys. Stat. Sol. A 14, 177 (1972) CrossRef
Dominich, V., Gogotsi, Y., Dub, S., Appl. Phys. Lett. 76, 2214 (2000)
Bradby, J. E., Williams, J. S., Swain, M. V., Phys. Rev. B 67, 085205 (2003) CrossRef
Clarke, D. R., Kroll, M. C., Kirchner, P. D., Cook, R. F., Phys. Rev. Lett. 60, 2156 (1988) CrossRef
Zarudi, I., Zou, J., Zhang, L. C., Appl. Phys. Lett. 82, 874 (2003) CrossRef
Kailer, A., Gogotsi, Y. G., Nickel, K. G., J. Appl. Phys. 81, 3057 (1997) CrossRef
Gogotsi, Y., Miletich, T., Gardner, M., Rosenberg, M., Rev. Sci. Instrum. 70, 4612 (1999) CrossRef
Lucazeau, G., Abello, L., J. Mater. Res. 12, 2263 (1997)
Kouteva-Arguirova, S., Arguirov, Tz., Wolfframm, D., Reif, J., J. Appl. Phys. 94, 4946 (2003) CrossRef
De Wolf, I., Semicond. Sci. Technol. 11, 139 (1996)
Orlov, V., Richter, H., Fischer, A., Reif, J., Müller, T., Wahlich, R., Mater. Sci. Semicond. Process. 5, 403 (2003) CrossRef