Skip to main content Accessibility help

Quantitative determination of the doping level distribution in n-type GaAs using absorption mapping

  • P. J. Wellmann (a1), A. Albrecht (a1), U. Künecke (a1), B. Birkmann (a2), G. Mueller (a1) (a2) and M. Jurisch (a3)...


We present an optical technique based on absorption measurements for the determination of the charge carrier concentration and its lateral distribution in n-type doped GaAs wafers. Calibration plots were determined in the charge carrier concentration range of 3 × 1017 m−3... 1 × 1018 cm−3 (range of trust up to 3 × 1018  cm−3) which is technically relevant for applications of GaAs wafers as substrate for laser and light emitting diodes. The error of the optical technique is in the range of 10% ... 15% and is comparable to electrical Hall measurements. The sensitivity of the setup, i.e. smallest detectable variation of doping (and hence charge carrier) concentration, is less than 1% in an area of 5 × 5 mm2 and about 20% across the 3 inch area. Absorption mappings of the charge carrier and hence doping homogeneity are presented for n-type GaAs:Si and GaAs:Te.


Corresponding author


Hide All
[1] B. Birkmann, R. Weingärtner, P. Wellmann, B. Wiedemann, G. Müller, J. Cryst. Growth 237–239 (P1), 345 (2002)
[2] Bugajski, M., Lewandowski, W., J. Appl. Phys. 57, 521 (1985)
[3] Casey Jr, H. C.., D. D. Sell, K. W. Wecht, J. Appl. Phys. 46, 250 (1975)
[4] Castaldini, A., Cavallini, A., Fraboni, B., Piqueras, J., J. Appl. Phys. 78, 6592 (1995)
[5] Haga, E., Kimura, H., J. Phys. Soc. Jpn 19, 1596 (1964)
[6] Hill, D. E., Phys. Rev. A 133, 866 (1964)
[7] Hovel, H. J., Semicond. Sci. Technol. A 7, 1 (1992)
[8] S. K. Krawczyk, M. Béjar, A. Kostka, M. F. Nuban, W. Warta, J. P. Joly, R. C. Blanchet, in Proceedings of the 7th International Conf. on Defect Recognition and Image Processing in Semiconductors (DRIP'97), Templin, 1997
[9] Krawczyk, S. K., Krafft, F., Klingelhöfer, C., Garrigues, M., Schohe, K., Semicond. Sci. Technol. A 7, 73 (1992)
[10] Lagowski, J., Gatos, H. C., Parsey, J. M., Wada, K., Kaminska, M., Walukiewicz, W., Appl. Phys. Lett. 40, 342 (1982)
[11] Mosel, F., Seidl, A., Hoffmann, D., Müller, G., Appl. Surf. Sci. 50, 364 (1991)
[12] Silverberg, P., Omling, P., Samuelson, L., Appl. Phys. Lett. 52, 1689 (1988)
[13] Vetter, T., Treichler, R., Winnacker, A., Semicond. Sci. Technol. 7, 150 (1992)
[14] S. Waldmüller, M. Lang, P. Wellmann, A. Winnacker, in Proceedings of the 6.Int.Conf. InP and Related Compounds, Santa Barbara, 1994, p. 231
[15] Weingärtner, R., Wellmann, P. J., Bickermann, M., Hofmann, D., Straubinger, T. L., Winnacker, A., Appl. Phys. Lett. 80, 70 (2002)
[16] P. J. Wellmann, R. Weingärtner, accepted for publication in Mat. Sci. Eng. B, 2003
[17] Weyher, J. L., Frigery, C., P. J. V. d. Wel, J. Cryst. Growth 103, 46 (1990)
[18] A. Winnacker, T. Vetter, F. X. Zach, in Proceeding of the 5th Conference on Semi-insulating III-V Materials, Malmö-Sweden, 1988, p. 583



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed