Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T06:35:38.094Z Has data issue: false hasContentIssue false

Quantifying of magnetically separated particles using Hall-effect sensing

Published online by Cambridge University Press:  30 May 2007

R. Mehasni*
Affiliation:
Laboratoire d'Electrotechnique (LEC), Université Mentouri, Route Ain Elbey 25000, Constantine, Algeria
M. E. Latreche
Affiliation:
Laboratoire d'Electrotechnique (LEC), Université Mentouri, Route Ain Elbey 25000, Constantine, Algeria
M. Feliachi
Affiliation:
IREENA-IUT-CRTT, 37 Boulevard de l'Université, BP 406, 44602 Saint-Nazaire Cedex, France
Get access

Abstract

In this paper, we present a modeling of a captured ferromagnetic particles quantifying method based on the detection and evaluation of the magnetic field variation caused by the particle static buildup. The detecting element is a Hall-effect sensor (probe) associated to the particle capture element which is an electromagnet with iron core. From a known value of the magnetic field measured at the particle static buildup locality, we predict the particle global concentration in the treated material sample (powder or liquid). This prediction is achieved by solving the inverse problem for the captured particles magnetic field variation. Such a resolution is based on an iterative resolution of the forward problem until obtaining the global particle concentration related to the measured value of the field variation. Because an exact value can not be obtained we retain the value that minimizes an error function. To minimize such a function we have used the Tabu searching method.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lenz, J.E., Proc. IEEE 78, 6 (1990) CrossRef
G. Boero, M. Demierre, P.-A. Besse, R.S. Popovic, J. Sensor and Actuators A, 106 (2003)
Ejsing, L., Hansen, M.F., Menon, A.K., Ferreira, H.A., Graham, D.L., Freitas, P.P., Appl. Phys. lett. 84, 23 (2004) CrossRef
Mihalovic, G., Xiong, P., Von Molnar, S., Ohtani, K., Ohno, H., Field, M., Sullivan, G.J., Appl. Phys. Lett. 87, 112502 (2005) CrossRef
Zhang, Z., Liu, Y., Yang, Y.P., Jin, Q.U., IEEE Trans. Magn. 41, 10 (2005)
R.S. Popovic, Z. Randjelovic, D. Manic, J. Sensor and Actuators A, 91 (2001)
R. Mehasni, M.E. Latreche, M. Feliachi, in Proceeding of the 12th international symposium on interdisciplinary electromagnetic, mechanic and biomedical problems (Vienna magnetics group; Bad Gastein, 2005)
Mehasni, R., Latreche, M.E., Feliachi, M., Int. J. Appl. Electromagn. Mech. 19, 1 (2004)
Fukui, S., Nakajima, H., Ozone, A., Hayatsu, M., Yamaguchi, M., Sato, T., Imaizumi, H., Nishijima, S., Watanabe, T., IEEE Trans. Appl. Supercond. 12, 01 (2002)
Takahashi, M., Umeki, T., Fukui, S., Ogawa, J., Yamaguchi, M., Sato, T., Imaizumi, H., Oizumi, M., Nishijima, S., Watanabe, T., IEEE Trans. Appl. Supercond. 15, 02 (2005)
Boehm, J., IEEE Trans. Magn. 27, 6 (1991) CrossRef
P.M. Drljaca, F. Vincent, P.-A. Besse, R.S. Popovic, J. Sensors and Actuators A, 97 (2002)
R.S. Popovic, Z. Randjelovic, D. Manic, J. Sensors and Actuators A, 91 (2001)
Yan, M., Udpa, S., Mandayam, S., Sun, Y., Sacks, P., Lord, W., IEEE Trans. Magn. 34, 5 (1998) CrossRef
Elshafiey, I., Udpa, L., Udpa, S.S., IEEE Trans. Magn. 31, 1 (1995) CrossRef