Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-06T07:57:09.201Z Has data issue: false hasContentIssue false

p-type doping by platinum diffusion in low phosphorus doped silicon

Published online by Cambridge University Press:  29 November 2002

L. Ventura*
Affiliation:
LMP, EA 3246, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2, France
B. Pichaud
Affiliation:
TECSEN, UMR 6122 CNRS, Université Aix-Marseille III, 13397 Marseille Cedex 20, France
W. Vervisch
Affiliation:
TECSEN, UMR 6122 CNRS, Université Aix-Marseille III, 13397 Marseille Cedex 20, France STMicroelectronics, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2, France
F. Lanois
Affiliation:
STMicroelectronics, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2, France
Get access

Abstract

In this work we show that the cooling rate following a platinum diffusion strongly influences the electrical conductivity in weakly phosphorus doped silicon. Diffusions were performed at the temperature of 910 °C in the range of 8–32 hours in 0.6, 30, and 60 Ω cm phosphorus doped silicon samples. Spreading resistance profile analyses clearly show an n-type to p-type conversion under the surface when samples are cooled slowly. On the other hand, a compensation of the phosphorus donors can only be observed when samples are quenched. One Pt related acceptor deep level at 0.43 eV from the valence band is assumed to be at the origin of the type conversion mechanism. Its concentration increases by lowering the applied cooling rate. A complex formation with fast species such as interstitial Pt atoms or intrinsic point defects is expected. In 0.6 Ω cm phosphorus doped silicon, no acceptor deep level in the lower band gap is detected by DLTS measurement. This removes the opportunity of a pairing between phosphorus and platinum and suggests the possibility of a Fermi level controlled complex formation.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carchano, H., Jund, C., Solid State Electron. 13, 83 (1970) CrossRef
Brotherton, S.D., Bradley, P., Bricknell, J., J. Appl. Phys. 50, 3396 (1979) CrossRef
Stöffer, W., Weber, J., Phys. Rev. B 33, 8892 (1986) CrossRef
Kwon, Y.K., Ishikawa, T., Kuwano, H., J. Appl. Phys. 61, 1055 (1987) CrossRef
Gill, A.A., Barber, N., Zafar Iqbal, M., J. Appl. Phys. 67, 1130 (1990) CrossRef
Pearton, S.J., Haller, E.E., J. Appl. Phys. 54, 3613 (1983) CrossRef
Lisiak, K.P., Milnes, A.G., J. Appl. Phys. 46, 5229 (1975) CrossRef
Evwaraye, A.O., Sun, E., J. Appl. Phys. 47, 3172 (1976) CrossRef
Azimov, S.A., Islamov, L.I., Sultanov, N.A., Sov. Phys. 50, 758 (1974)
A.V. Hayes, M. Livschultz, T.J. Knowles, ECS Symposium Proceeding, edited by P.W. Shackle (Philadelphia, 1987), Vol. 87-13, p. 194
Sachse, J.U., Sveinbjörnsson, E.Ö., Jost, W., Weber, J., Lemke, H., Phys. Rev. B 55, 16176 (1997) CrossRef
Ventura, L., Pichaud, B., Lanois, F., Lhorte, A., Jpn. J. Appl. Phys. 40, 3938 (2001) CrossRef
Gösele, U., Frank, W., Seeger, A., Appl. Phys. 23, 361 (1980) CrossRef
Zimmermann, H., Ryssell, H., Appl. Phys. A 55, 121 (1992) CrossRef
Ventura, L., Pichaud, B., Lanois, F., Solid State Phenom. 82-84, 417 (2002) CrossRef
Pichler, P., Jugling, W., Selberherr, S., Guerrero, E., Pötzl, H.W., IEEE Trans. Comp. Aided Design 4, 384 (1985) CrossRef
Valdinoci, M., Colalongo, L., Pellegrini, A., Rudan, M., IEEE Trans. Electron Devices 43, 2269 (1996) CrossRef
K. Graff, Metal impurities in silicon device fabrication, edited by U. Gonser, R.M. Osgood Jr., M.B. Parish, H. Sakaki (Springer, Heidelberg, 1995), Springer Series in Materials Science, p. 68
Lecrosnier, D., Paugam, J., Pelous, G., Richou, F., Salvi, M., J. Appl. Phys. 52, 5090 (1984) CrossRef